www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Gleichsetzung2er CosFunktionen
Gleichsetzung2er CosFunktionen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichsetzung2er CosFunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 Sa 24.06.2006
Autor: dominik88

Aufgabe
Unter welchen Bedingungen gilt:
(1)  c = s²a²+s²b²-2s²ab*cos ( [mm] \gamma [/mm] )
(2)  c = x²a²+y²b²-2xyab*cos ( [mm] \gamma [/mm] )

Auf dem ersten Blick fiel mir sofort auf, wenn x=y=s gilt sind beide Gleichungen (1) und (2) gleich. Dies ist auch einfach zu zeigen.
Aber mein Problem liegt darin zu zeigen, dass es keine weiteren Lösungen mehr gibt.
Es wäre also nett wenn man mir beim Lösen des Problems weiterhelfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Gleichsetzung2er CosFunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:57 Sa 24.06.2006
Autor: leduart

Hallo dominik
Die Gleichung sieht nach einer Gleichung aus der Geometrie aus, wo c,a,b und [mm] \gamma [/mm] geometrische Größen sind. Nur dann macht die Frage einen Sinn!
denn sonst kannst du für [mm] s,a,b,\gamma [/mm] einsetzen was du willst und kriegst irgendein c raus.
Also was sind deine Größen c,a,b,s,x,y?
Und kontrollier auch noch ob bei c nicht auch ein Exponent steht!
Oder sollst du überprüfen, wann die beiden Gleichungen dasselbe c ergeben?
dann z. Bsp auch für a=b=0  oder  [mm] \gamma [/mm] =90° und a=b und [mm] x^{2}+y^{2}=s^{2} [/mm]  usw.
Was darf man in den Gleichungen ändern? alle Buchstaben oder nur x und y?
Gruss leduart

Bezug
                
Bezug
Gleichsetzung2er CosFunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Sa 24.06.2006
Autor: dominik88

Hallo leduart,
vielen herzlichen dank für deinen Beitrag.
Da habe ich wohl einige kleine Mängel beim Aufschreiben gehabt, wohl schon beim fußballspiel gewesen.
Natürlich muss es c² zu Beginn heißen, sonst wäre es ja keine Cosinusfunktion.
a b und  [mm] \gamma [/mm] sind Größen die nicht verändert werden dürfen. Dabei sind a b und c die Seitenlängen, x y und s sind meineserachtens Vorfaktoren bei den Seitenlängen  [mm] \not=0 [/mm] ( 0,5c bedeutet dass nur die Hälfte der Länge von c gemeint ist ). Die Aufgabe ist wann die beiden Gleichungen das selbe c als Ergebnis ergeben.
Somit können nur s x und y verändert werden
gruß dom

Bezug
        
Bezug
Gleichsetzung2er CosFunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Sa 24.06.2006
Autor: leduart

Hallo
Nimm an [mm] $c^2=a^2+b^2$ [/mm] also ein rechtwinkliges Dreieck.
Dann vergrößere a und b mit dem Faktor s, behalte c gleich.
dann entsteht ein neues Dreieck mit [mm] \gamma<90° [/mm] (für s>1)
und es gilt$ [mm] c^2=(sa)^2+(sb)^2 -2sa*sb*cos\gamma$. [/mm]
Nimm den Umkreis um dieses Dreieck. [mm] \gamma [/mm] ist der Sehnenwinkel zur Sehne c. alle Dreiecke über derselben Sehne in diesem Kreis haben denselben Winkel [mm] \gamma, [/mm] und deshalb gilt für sie auch, wenn ihre Längen x*a und y*b heissen [mm] $c^2=(xa)^2+(yb)^2-2*xa*yb*cos\gamma$. [/mm]
Das gibt dir eine Beschreibung aller möglichen Wahlen von x und y bei gegebenem s. Umgekehrt natürlich auch ein s für gegebenes x und y, das ist aber schwerer zu konstruieren,
Zeichne es auf, und ich hoffe du kennst den Sehnenwinkelsatz!
Gruss leduart

Bezug
                
Bezug
Gleichsetzung2er CosFunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:46 So 25.06.2006
Autor: dominik88

Gruss leduart,
nochmals vielen dank,
den Sehnenwinkelsatz kenne ich und deshalb verstehe ich auch diese Zeichnung. Nun habe ich aber noch eine Frage, gilt deine Beschreibung nur für den Fall s > 1 ?
Wie sieht würde es denn bei s < 1 aussehen?
gruß dom

Bezug
                        
Bezug
Gleichsetzung2er CosFunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:09 Mo 26.06.2006
Autor: leduart

Hallo Dominik
Natürlich kannst du dasselbe Argument mit Sehnenwinkelsatz auch für s<1 verwenden. nur muss s*a+s*b >c sein. Aber wenn das nicht der Fall ist kann ja die erste Gleichung nicht richtig sein (kein dreieck)
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de