www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Gleichung
Gleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 07.03.2006
Autor: Professor

Hi Leute,

zur Zeit schwitze ich über Differentialgleichungen. Dabei habe ich bei folgendem Zwischenschritt einen kleines Verständnisproblem. Vielleicht kann mir von euch beim Lösen des geistigen Knotens helfen.

ln |y| = - ln |sin x| + [mm] c_{1} [/mm]

nach y aufgelöst, soll dann als Ergebnis folgendes heraus kommen.

y = [mm] \bruch{c_{2}}{sin x} [/mm]

c soll dabei die Integrationskonstante sein.

Für alle hilfreichen Antworten möchte ich mich bereits jetzt schon bei euch bedanken.



        
Bezug
Gleichung: Knoten lösen :-)
Status: (Antwort) fertig Status 
Datum: 21:56 Di 07.03.2006
Autor: Karl_Pech

Hallo Professor,


> ln |y| = - ln |sin x| + [mm]c_{1}[/mm]
>  
> nach y aufgelöst, soll dann als Ergebnis folgendes heraus
> kommen.
>  
> y = [mm]\bruch{c_{2}}{sin x}[/mm]
>  
> c soll dabei die Integrationskonstante sein.


Du mußt hier auf beiden Seiten die []Exponentialfunktion anwenden, also z.B. [mm]a = b \gdw e^a = e^b[/mm]. Es gilt nämlich [mm]e^{\ln x} = x[/mm]. Anschließend führt dich die konsequente Anwendung der []Potenzregeln zum Ziel. Versuch' es mal und schreib' dann falls nötig auf, wo es (noch) hackt.



Viele Grüße
Karl
[user]




Bezug
                
Bezug
Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:28 Di 07.03.2006
Autor: Professor

Hi,

zuerst mal danke für deine schnelle Antwort.

nun die e-Funktion anwenden macht Sinn. Nur liegt genau hier das Problem.

[mm] e^{ln y} [/mm] =  [mm] e^{- ln sin x + c_{1}} [/mm]

[mm] e^{ln y} [/mm] = [mm] e^{- ln sin x} [/mm] + [mm] e^{c_{1}} [/mm]

Warum kann ich hier [mm] c_{1} [/mm] einfach aus dem Exponenten ziehen? Ich habe doch keine Multiplikation! [mm] x^{5} \not= x^{2} [/mm] + [mm] x^{3} [/mm]

y = [mm] \bruch{1}{sin x} [/mm] + [mm] c_{2} [/mm]

y = [mm] \bruch{c_{2}}{sin x} [/mm]

Warum? Ich habe doch zwischen dem Bruch und dem [mm] c_{2} [/mm] keine Multiplikation sondern eine Addition.

Gruß

Prof.


Bezug
                        
Bezug
Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 Mi 08.03.2006
Autor: felixf


> Hi,
>  
> zuerst mal danke für deine schnelle Antwort.
>  
> nun die e-Funktion anwenden macht Sinn. Nur liegt genau
> hier das Problem.
>  
> [mm]e^{ln y}[/mm] =  [mm]e^{- ln sin x + c_{1}}[/mm]
>  
> [mm]e^{ln y}[/mm] = [mm]e^{- ln sin x}[/mm] + [mm]e^{c_{1}}[/mm]

Schau dir nochmal gut den zweiten Link von Karl Pech an. Und dann ueberleg dir was du falsch gemacht hast.

> Warum kann ich hier [mm]c_{1}[/mm] einfach aus dem Exponenten
> ziehen? Ich habe doch keine Multiplikation! [mm]x^{5} \not= x^{2}[/mm]
> + [mm]x^{3}[/mm]

Genau. Aber wie kann man [mm] $x^5$ [/mm] durch [mm] $x^2$ [/mm] und [mm] $x^3$ [/mm] ausdruecken? (Siehe den zweiten Link von Karl.)

LG Felix


Bezug
                                
Bezug
Gleichung: Idee
Status: (Frage) beantwortet Status 
Datum: 01:24 Mi 08.03.2006
Autor: Professor

Hallo,

[mm] e^{ln y} [/mm] = [mm] e^{-ln sin x +c1} [/mm]

ist überhaupt nicht

[mm] e^{ln y} [/mm] = [mm] e^{-ln sin x} [/mm] + [mm] e^{c1} [/mm]

sondern

[mm] e^{ln y} [/mm] = [mm] e^{-ln sin x} [/mm] * [mm] e^{c1} [/mm]

Richtig?!

In der Vorlesung haben wir die Gleichung mit + aufgeschrieben. Anscheinend hat es sich dabei um einen Schreibfehler gehandelt und es muß * heißen. Oder?

Gruß

Prof.

PS: Mathematik ist schon schwer genug zu verstehen, wenn aber dann noch Fehler in der Angabe sind, dann Gute Nacht. ;-)



Bezug
                                        
Bezug
Gleichung: Potenzgesetz
Status: (Antwort) fertig Status 
Datum: 07:34 Mi 08.03.2006
Autor: Loddar

Guten Morgen Professor!


Deine Variante ist selbstverständlich gemäß dem MBPotenzgesetz [mm] $a^{m+n} [/mm] \ = \ [mm] a^m [/mm] \ * \ [mm] a^n$ [/mm] richtig.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de