www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Gleichung
Gleichung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:28 Fr 25.05.2012
Autor: Count123

Hallo :)

Ich habe mir den Beweis zu den KQ-Schätzern im linearen regressionsmodell angeschaut. Leider verstehe ich eine Gleichung nicht so ganz bzw. komme ich nicht dahinter.

[mm] \summe_{i=1}^{n}(x_{i}^{2} [/mm] - n [mm] \overline{x}^{2}) [/mm]
= [mm] \summe_{i=1}^{n}(x_{i} [/mm] - [mm] \overline{x})^{2} [/mm]

Ich habe mir gedacht, dass n [mm] \overline{x}^{2} [/mm] als Summe
[mm] \summe_{i=1}^{n}(\overline{x}^{2}) [/mm] zu schreiben, damit ich danach beide summen zusammenfassen kann..aber dennoch komme ich nicht auf die gleichung.

Danke schonmal für Hilfe :)

LG Count123 :)

        
Bezug
Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Fr 25.05.2012
Autor: kamaleonti

Hallo,
> Ich habe mir den Beweis zu den KQ-Schätzern im linearen
> regressionsmodell angeschaut. Leider verstehe ich eine
> Gleichung nicht so ganz bzw. komme ich nicht dahinter.
>  
> [mm]\summe_{i=1}^{n}(x_{i}^{2}[/mm] - n [mm]\overline{x}^{2})[/mm] = [mm]\summe_{i=1}^{n}(x_{i}[/mm] - [mm]\overline{x})^{2}[/mm]

Stand dort womöglich

       [mm] \left(\sum_{i=1}^n x_i^2\right)-n \overline{x}^2=\sum_{i=1}^n(x_i-\overline{x})^2 [/mm] ?

Das ließe sich dann tatsächlich nachrechnen.

>  
> Ich habe mir gedacht, dass n [mm]\overline{x}^{2}[/mm] als Summe
> [mm]\summe_{i=1}^{n}(\overline{x}^{2})[/mm] zu schreiben, damit ich
> danach beide summen zusammenfassen kann..aber dennoch komme
> ich nicht auf die gleichung.

Ich auch nicht.

>  
> Danke schonmal für Hilfe :)
>  
> LG Count123 :)

LG

Bezug
                
Bezug
Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Fr 25.05.2012
Autor: Count123

Oh, das tut mir leid..mein fehler.

es ist natürlich die von dir angegebene gleichung..

trotzdem komme ich nicht darauf

Bezug
                        
Bezug
Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Fr 25.05.2012
Autor: Leopold_Gast

Verwende die binomische Formel und beachte, daß man vom Summationsindex unabhängige Faktoren vor die Summe ziehen, also ausklammern kann. Und dann die Definition des arithmetischen Mittels:

[mm]\sum_{i=1}^n x_i = n \bar{x}[/mm]

Bezug
                                
Bezug
Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Fr 25.05.2012
Autor: Count123

Hmm..also ich habe ja jetzt den Audruck

[mm] \summe_{i=1}^{n}(x_{i}^{2}) [/mm] - n [mm] \overline{x}^{2} [/mm]

aber wie wende ich hier die binomische formel an? für die ersten beiden fehlt der mischterm und die dritte würde mir ja auch nicht weiterhelfen..

Bezug
                                        
Bezug
Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Fr 25.05.2012
Autor: kamaleonti


> Hmm..also ich habe ja jetzt den Audruck
>  
> [mm]\summe_{i=1}^{n}(x_{i}^{2})[/mm] - n [mm]\overline{x}^{2}[/mm]

Auf der anderen Seite der Gleichung kannst Du die binomische Formel anwenden.

>  
> aber wie wende ich hier die binomische formel an? für die
> ersten beiden fehlt der mischterm und die dritte würde mir
> ja auch nicht weiterhelfen..

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de