www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Gleichung
Gleichung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung: 4. und 5.Grades
Status: (Frage) beantwortet Status 
Datum: 17:17 Sa 01.10.2005
Autor: der_puma

hi,

hab ma eine frage zum lösen von gleichungen.wie löst man genau eine gleichung 4. und 5. grades? ich weiss man muss eine lösung vorgeben habe ode erraten un dann polynomdivsion oder so.kann mir da jemand das mal genau sagen un auch ein beispiel geben ?

danke
christopher

        
Bezug
Gleichung: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:56 Sa 01.10.2005
Autor: MathePower

Hallo der_puma,

> hab ma eine frage zum lösen von gleichungen.wie löst man
> genau eine gleichung 4. und 5. grades? ich weiss man muss
> eine lösung vorgeben habe ode erraten un dann
> polynomdivsion oder so.kann mir da jemand das mal genau
> sagen un auch ein beispiel geben ?

für Gleichungen ab 5. Grades gibt es keine geschlossenen Formeln.
Da muß man ein i.d.R. ein Näherungsverfahren anwenden, um die Nullstellen zu finden.

Gleichungen 4. Grades sind zwar formal lösbar. Diese Formeln sind aber höchst umständlich.

[mm]a\;x^{4}\;+\;b\;x^3\;+\;c\;x^2\;+\;d\;x\;+\;e\;=\;0[/mm]

Dies ist äquivalent mit (Division durch a):

[mm]x^{4}\;+\;A\;x^3\;+\;B\;x^2\;+\;C\;x\;+\;D\;= \;0[/mm]

Durch die Substitution [mm]x\;=\;y\;-\frac{A}{4}[/mm] geht die Gleichung über in:

[mm]y^{4}\;+\;p\;y^2\;+\;y\;x\;+\;r\;= \;0[/mm]

welche sich als Differenz zweier Quadrate darstellen läßt:

[mm] \begin{gathered} y^4 \; + \;p\;y^2 \; + \;q\;y\; + \;r\; = \;\left( {y^2 \; + \;\frac{\eta } {2}} \right)^2 \; + \;\left( {p\; - \;\eta } \right)\;y^2 \; + \;q\;y\; + \;\left( {r\; - \;\frac{{\eta ^2 }} {4}} \right) \hfill \\ = \;\left( {y^2 \; + \;\frac{\eta } {2}} \right)^2 \; - \;\left( {\left( {\eta \; - \;p} \right)\;y^2 \; - \;q\;y\; + \;\left( {\;\frac{{\eta ^2 }} {4}\; - \;r} \right)} \right) \hfill \\ \end{gathered} [/mm]

Der letzte Klammerausdruck muß ein vollständiges Quadrat sein. Dies ist gewährleistet, wenn [mm]\eta[/mm] gemäß

[mm]\left( {\eta \; - \;p} \right)\;\left( {\;\eta ^2 \; - \;4\;r} \right)\; = \;q^2[/mm]

gewählt wird. Hierzu ist das Lösen einer kubischen Gleichung erforderlich.

Dann folgt:

[mm] \begin{gathered} y^4 \; + \;p\;y^2 \; + \;q\;y\; + \;r\; = \;\left( {y^2 \; + \;\frac{\eta } {2}} \right)^2 \; - \;\left( {\alpha \;y\; + \;\beta } \right)^2 \hfill \\ = \;\left( {y^2 \; + \;\alpha \;y\; + \;\beta \; + \;\frac{\eta } {2}} \right)\;\left( {y^2 \; - \;\alpha \;y\; - \;\beta \; + \;\frac{\eta } {2}} \right) \hfill \\ \end{gathered} [/mm]

mit

[mm] \begin{gathered} \alpha ^2 \; = \;\eta \; - \;p \hfill \\ \beta ^2 \; = \;\frac{{\eta ^2 }} {4}\; - \;r \hfill \\ \end{gathered} [/mm]

Die Lösungen der reduzierten Gleichung 4. Grades ergeben sich dann als Lösungen der beiden quadratischen Gleichungen.

Gruß
MathePower



Bezug
                
Bezug
Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Sa 01.10.2005
Autor: der_puma

hi,

schonam danke,aber geht das nicht leichert ?

ich mein eine gleichung 4.grades is doch darstellbar als
(x-x1) (x-x2) (x-x3) (x-x4)
also geht es nicht auch dass man eine gleichung 4.grades ganz einfach duch (x²-(eine lösung)) teil un dann ne quadratische gleichung löst????

gruß christopher

Bezug
                        
Bezug
Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Sa 01.10.2005
Autor: Zwerglein

Hi, Puma,

trägst Du eigentlich auch mal adidas-Schuhe?

Aber zu Deiner Frage: Mathe-Power hat Dir gezeigt, wie man vorgehen würde, wenn man keine Lösungen raten kann. Zum Glück kommt das selten vor! Daher hier ein Beispiel für eine Gleichung 4. Grades, wo Du "auf übliche Art" zum Ziel kommst:
[mm] x^{4} [/mm] - [mm] 5x^{3} [/mm] + [mm] 4x^{2} [/mm] + 7x - 3 = 0
Du rätst zunächst z.B. [mm] x_{1} [/mm] = -1, denn:
[mm] (-1)^{4} [/mm] - [mm] 5*(-1)^{3} [/mm] + [mm] 4*(-1)^{2} [/mm] + 7*(-1) - 3 = 0
Daher muss die Polynomdivision
[mm] (x^{4} [/mm] - [mm] 5x^{3} [/mm] + [mm] 4x^{2} [/mm] + 7x - 3) : (x + 1) aufgehen.
Ergebnis dieser Division: [mm] x^{3} [/mm] - [mm] 6x^{2} [/mm] + 10x - 3

Nun musst Du diesen Term =0 setzen:
[mm] x^{3} [/mm] - [mm] 6x^{2} [/mm] + 10x - 3 = 0.

Wieder kannst Du eine Lösung raten; diesmal ist es: [mm] x_{2} [/mm] = 3, denn:
[mm] 3^{3} [/mm] - [mm] 6*3^{2} [/mm] + 10*3 - 3 = 0.

Erneute Polynomdivision:
[mm] (x^{3} [/mm] - [mm] 6x^{2} [/mm] + 10x - 3) : (x - 3) = [mm] x^{2} [/mm] - 3x + 1

Die restlichen Lösungen kriegst Du nun mit p/q-Formel (oder auch mit der "Mitternachtsformel"):
[mm] x^{2} [/mm] - 3x + 1 = 0

[mm] x_{3/4} [/mm] = [mm] \bruch{3 \pm \wurzel{5}}{2} [/mm]

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de