www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Gleichung Funktion 3. Grades
Gleichung Funktion 3. Grades < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung Funktion 3. Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Fr 16.09.2011
Autor: CrazyBlue

Aufgabe
Bestimmen Sie die Funktionsgleichung des vorliegenden Graphen. Es ist eine Funktion dritten Grades.

Hallo,

ich habe das Problem, dass ich einen Graphen dritten Grades vorliegen habe, aber nicht weiß wie ich die Funktionsgleichung bestimmen kann.

Hier habe ich eine Erklärung dazu gefunden: []http://www.iks-mathephysik.de/upload/dott/Funktionsgleichungen.pdf(Seite 2)

Ich verstehe aber nicht, wie sie die Gleichungen mit den 4 Unbekannten aufgelöst haben und dann auf das Ergebnis kommen. Wenn ich das in den Taschenrechner eintippe, kommt nichts vernünftiges raus. Könnt ihr mir das erklären?

Gruß

CrazyBlue

        
Bezug
Gleichung Funktion 3. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Fr 16.09.2011
Autor: Fulla

Hallo CrazyBlue,

Du hast also eine Funktionsgleichung der Form [mm] $f(x)=ax^3+bx^2+cx+d$. [/mm]

Aus dem Graphen musst du jetzt vier verschiedene Informationen rauslesen. Das können bestimmte Punkte sein, durch die der Graph verläuft oder Hoch-/Tiefpunkte oder Wendepunkte.

- Kannst du etwa ablesen, dass der Graph durch den Punkt (2,1) geht, setzt du ein: [mm] $f(2)=a*2^3+b*2^2+c*2+d=1$ [/mm]
- Gibt es einen Hochpunkt bei (0,1) musst du die erste Ableitung betrachten, denn es gilt dann [mm] $f^\prime(0)=1$. [/mm] Du rechnest also: [mm] $f^\prime(x)=3*ax^2+2*bx+c$ $\Rightarrow$ $f^\prime(0)=c=1$ [/mm]
- Bei Wendepunkten musst du die zweite Ableitung betrachten.

So bekommst du schließlich 4 verschiedene (!) Gleichungen und kannst daraus die 4 Unbekannten bestimmen. Sollten zwei Gleichungen identisch sein, musst dir eben noch eine andere suchen.

Schreib hier doch mal ein paar charakteristische Punkte deines Graphen rein und versuche die zugehörigen Gleichungen aufzustellen.


Lieben Gruß,
Fulla


Bezug
                
Bezug
Gleichung Funktion 3. Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Fr 16.09.2011
Autor: CrazyBlue

Also meine vier Informationen über den Graphen sind:
1. Nullstelle f(0)=0
2. Nullstelle f(-1)=0
3. Nullstelle f(1)=0
4. Wendepunkt (0/0)

Meine Gleichungen:

1. d=0
2. -a+b-c=0
3. a+b+c=0
4. f"(x)= 6ax+2 <- das verstehe ich nicht, wie muss ich den Wendepunkt denn da einfügen? Da kommt dann doch keine Gleichung mit einer Unbekannten raus.

Wenn ich jetzt die 4 Gleichungen hätte, dann wüsste ich aber trotzdem nicht wie es weiter geht. Wie löse ich die denn dann auf?

Gruß CrazyBlue

Bezug
                        
Bezug
Gleichung Funktion 3. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Fr 16.09.2011
Autor: Physiker010

Beim WendePunkt ist die 2. Ableitung Null also hast du:

f"(0)=0
und
f"(x)=6ax+2b
folglich:
2b=0

Nun hast du 4 gleichung und 4 Unbekannte. Wobei b=d=0. Also hast du hier nurnoch 2 Unbekannte und genau 2 Gleichngen. Also gibt es genau eine lösung die durch cleveres Umformen erhölst.

Bezug
                                
Bezug
Gleichung Funktion 3. Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:35 Fr 16.09.2011
Autor: CrazyBlue

Also habe ich nur noch diese beiden Formeln:

-a+b-c=0
a+b+c=0

wobei b=0 ist, also kann ich schreiben:

-a-c=0
a+c=0

oder?

Aber ich verstehe nicht wie ich da jetzt auf eine Lösung kommen soll bzw. was ich wie umformen muss. Darin liegt mein Problem.

Bezug
                                        
Bezug
Gleichung Funktion 3. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 00:49 Sa 17.09.2011
Autor: Schadowmaster


> Also habe ich nur noch diese beiden Formeln:
>  
> -a+b-c=0
>  a+b+c=0
>  
> wobei b=0 ist, also kann ich schreiben:
>  
> -a-c=0
>  a+c=0
>  
> oder?
>  
> Aber ich verstehe nicht wie ich da jetzt auf eine Lösung
> kommen soll bzw. was ich wie umformen muss. Darin liegt
> mein Problem.

Diese beiden Gleichungen sind äquivalent, das heißt du kannst auch gern nur eine davon betrachten.
Also es muss gelten:
a+c=0
also:
c = -a

Weiterhin, damit du wirklich eine Funktion dritten Grades hast, muss $a [mm] \not= [/mm] 0$ gelten.
Also wähle a beliebig, berechne c entsprechend und du hast eine (von vielen möglichen) Funktionen.
Wenn es wirklich eine (eindeutige) Funktionsgleichung sein soll brauchst du noch ein paar mehr Infos. ;)

MfG

Schadowmaster


Bezug
                                                
Bezug
Gleichung Funktion 3. Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 So 18.09.2011
Autor: CrazyBlue

Ah, okay. Bis dahin habe ich es jetzt verstanden.

Im Unterricht hatten wir auch die Formel a=-c, aber den Schritt danach verstehe ich nicht, wir haben dann geschrieben:

f(x)= ax(^3)-ax    

-> ich glaube das verstehe ich noch, da a=-c kommt diese Formel zustande und das [mm] bx^2 [/mm] sowie das d wird weggelassen, weil b=d=0, richtig?

dann haben wir die erste Ableitung davon gebildet und für a=1 eingesetzt um die Extremstellen zu errechnen.

f'(x)= 3ax(^2) - a = 0
f'(1)=3x(^2) - 1 = 0

aber wozu braucht man die Extremstellen?
Und was mache ich dann, wenn ich die Extremstellen habe?

Entschuldigung, für die vielen Fragen, aber ich hoffe ihr könnt mir trotzdem weiter helfen.

Vielen Dank schonmal!

Gruß CrazyBlue

Bezug
                                                        
Bezug
Gleichung Funktion 3. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 So 18.09.2011
Autor: M.Rex


> Ah, okay. Bis dahin habe ich es jetzt verstanden.
>  
> Im Unterricht hatten wir auch die Formel a=-c, aber den
> Schritt danach verstehe ich nicht, wir haben dann
> geschrieben:
>  
> f(x)= ax(^3)-ax    
>
> -> ich glaube das verstehe ich noch, da a=-c kommt diese
> Formel zustande und das [mm]bx^2[/mm] sowie das d wird weggelassen,
> weil b=d=0, richtig?

So ist es.

>  
> dann haben wir die erste Ableitung davon gebildet und für
> a=1 eingesetzt um die Extremstellen zu errechnen.

Warum das? Das macht so keinen Sinn.

>  
> f'(x)= 3ax(^2) - a = 0
>  f'(1)=3x(^2) - 1 = 0
>  
> aber wozu braucht man die Extremstellen?

Für die Vierte Bedingung die du noch braucsht, um die Funktion zu bestimmen, das ist ein klassischer Vertreter der  MBSteckbriefaufgaben.

>  Und was mache ich dann, wenn ich die Extremstellen habe?

die vierte noch nötige Gleichung ermitteln.

>  
> Entschuldigung, für die vielen Fragen, aber ich hoffe ihr
> könnt mir trotzdem weiter helfen.
>  
> Vielen Dank schonmal!
>  

Marius

> Gruß CrazyBlue


Bezug
                                                                
Bezug
Gleichung Funktion 3. Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:06 So 18.09.2011
Autor: CrazyBlue

Also wir haben die x-Werte der Extremstellen mit  f'(x)= [mm] 3ax^2 [/mm] - a = 0 (für a haben wir 1 eingesetzt) errechnet. Da kam dann 0,57 und - 0,57 heraus.

Dann haben zu diesen x-Werte die zugehörigen y-Werte von der Funktion f(x)= ax(^3) - ax errechnet. Dann haben wir die Extremstellen (- 0.57/0.38) und (0.57/-0.38) bekommen.

Das sind die Extremstellen der Funktion f(x)= [mm] x^3-x, [/mm] aber nicht von der Funktion die wir suchen. Da wir nun ablesen können, dass die Extremstellen bei (0.57/-1) und (-0.57/1) liegen.

Der nächste Schritt ist dann:

a * 0,38 = 1

und diese Gleichung aufgelöst, das Ergebnis ist 2,598

Somit haben wir dann die Formel F = [mm] 2,598(x^3-x). [/mm]


Beim letzten Schritt verstehe ich aber nicht, wie man darauf die Gleichung a * 0,38 = 1 kommt.

Ist diese Schrittfolge eher untypisch oder kann man das bei den normalen Formeln immer so machen?

Gruß CrazyBlue


Bezug
                                                                        
Bezug
Gleichung Funktion 3. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 So 18.09.2011
Autor: M.Rex

Hallo

> Also wir haben die x-Werte der Extremstellen mit  f'(x)=
> [mm]3ax^2[/mm] - a = 0 (für a haben wir 1 eingesetzt) errechnet. Da
> kam dann 0,57 und - 0,57 heraus.

Woher habt ihr a=1?

>
> Dann haben zu diesen x-Werte die zugehörigen y-Werte von
> der Funktion f(x)= ax(^3) - ax errechnet. Dann haben wir
> die Extremstellen (- 0.57/0.38) und (0.57/-0.38) bekommen.
>  
> Das sind die Extremstellen der Funktion f(x)= [mm]x^3-x,[/mm] aber
> nicht von der Funktion die wir suchen. Da wir nun ablesen
> können, dass die Extremstellen bei (0.57/-1) und (-0.57/1)
> liegen.

Den Schritt verstehe ich nicht.

>  
> Der nächste Schritt ist dann:
>  
> a * 0,38 = 1
>  
> und diese Gleichung aufgelöst, das Ergebnis ist 2,598

Das ist doch ein Wiederspruch zu a=1 von oben!

>  
> Somit haben wir dann die Formel F = [mm]2,598(x^3-x).[/mm]
>  
>
> Beim letzten Schritt verstehe ich aber nicht, wie man
> darauf die Gleichung a * 0,38 = 1 kommt.

Ich auch nicht.

>  
> Ist diese Schrittfolge eher untypisch oder kann man das bei
> den normalen Formeln immer so machen?

Welche normalen Formeln? Die Schrittfolge ist meiner Meinung nach nich nur untypisch, sodern auch unsinnig, weil ´überhaupt nicht nachwollziehbar.
Schau dir mal den Link zu Steckbriefaufgaben aus meiner anderen Antwort an, das ist die übliche Vorgehensweise. Stelle also die benötigten Gleicungen auf, und löse dann das entstehende lineare Gleichungssystem mit dem Gauß-Algorithmus.

>  
> Gruß CrazyBlue
>  

Marius


Bezug
                        
Bezug
Gleichung Funktion 3. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 So 18.09.2011
Autor: abakus


> Also meine vier Informationen über den Graphen sind:
>  1. Nullstelle f(0)=0
> 2. Nullstelle f(-1)=0
>  3. Nullstelle f(1)=0
>  4. Wendepunkt (0/0)
>  
> Meine Gleichungen:
>  
> 1. d=0
>  2. -a+b-c=0
>  3. a+b+c=0
>  4. f"(x)= 6ax+2 <- das verstehe ich nicht, wie muss ich
> den Wendepunkt denn da einfügen? Da kommt dann doch keine
> Gleichung mit einer Unbekannten raus.

Hallo,
du hast gerade selbst geschrieben, dass (0|0) ein Wendepunkt ist,
Das heißt, dass DORT (also an der Stelle x=0) die zweite Ableitung Null sein muss.
Du benötigst also nicht allgemein
4. f"(x)= 6ax+2
sondern konkret
f''(0)=6*a*0+2=0
Das kann allerdings nicht sein, denn 2 [mm] \ne [/mm] 0.
Hast du eventuell "Wendepunkt" mit "Extrempunkt" verwechselt?
Gruß Abakus

>  
> Wenn ich jetzt die 4 Gleichungen hätte, dann wüsste ich
> aber trotzdem nicht wie es weiter geht. Wie löse ich die
> denn dann auf?
>  
> Gruß CrazyBlue


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de