www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Gleichung auflösen
Gleichung auflösen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:07 Sa 20.12.2014
Autor: piriyaie

Aufgabe
a=b         [mm] |\cdot [/mm] a
[mm] a^{2}=ab |-2ab+a^{2} [/mm]
[mm] a^{2}-2ab+a^{2}=ab-2ab+a^{2} [/mm]
[mm] 2a^{2}-2ab=-ab+a^{2} [/mm]
[mm] 2(a^{2}-ab)=1(a^{2}-ab) |:(a^{2}-ab) [/mm]
2=1

Guten Morgen,

mir hat gestern der Vater eines meiner Schüler obiges Rätsel gestellt.

Die Frage ist was ist falsch?

Ich muss sagen... Keine Ahnung! XD

Ich habe die Gleichung schon mit konkreten Zahlen ausprobiert. da kommt das richtige raus.

Meine erste Vermutung ist, dass wenn man a gleich b setzt muss man die Variablennamen auch gleich setzten. Also wenn a=b dann ersetzte b durch a oder a druch b.

Also müsste man dann a=b [mm] \gdw [/mm] a=a bzw. b=b

und dann so weiter rechnen und in jeder äquivalenzumformung wieder für a dann b nehmen bzw. anderst rum.

Was sagt ihr dazu?

Danke schonmal. :-)

Ich hoffe wir können das Rätsel gemeinsam lösen.

LG
Ali



        
Bezug
Gleichung auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:20 Sa 20.12.2014
Autor: DieAcht

Hallo Ali!


Der erste Schritt ist schon keine äquivalente Umformung. Wieso?
Außerdem funktioniert auch im Allgemeinen die letzte Umformung
nicht. Auch wenn [mm] $a=b\not=0$ [/mm] ist, dann teilen wir zum Beispiel mit
[mm] $a=b=:1\$ [/mm] wieder durch Null. Genauer: Für alle [mm] $a=b\not=0 [/mm] würden wir
durch Null teilen und für [mm] $a=b=0\$ [/mm] sowieso!

Genauso erhalten wir zum Beispiel durch Quadrieren von [mm] $x=2\$ [/mm] eine
Lösung zu viel (nachrechnen!). Am Ende muss man dann die Probe
machen.


Gruß
DieAcht

Bezug
        
Bezug
Gleichung auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Sa 20.12.2014
Autor: fred97

Die Acht hat ja schon das wesentliche gesagt. Machen wir es aber ganz klar, was passiert ist: die Implikationen



> a=b         [mm]|\cdot[/mm] a

[mm] \Rightarrow [/mm]

>  [mm]a^{2}=ab |-2ab+a^{2}[/mm]

[mm] \Rightarrow [/mm]


>  [mm]a^{2}-2ab+a^{2}=ab-2ab+a^{2}[/mm]

[mm] \Rightarrow [/mm]


>  [mm]2a^{2}-2ab=-ab+a^{2}[/mm]

[mm] \Rightarrow [/mm]

> [mm] 2(a^{2}-ab)=1(a^{2}-ab) [/mm]      


sind bis hier O.K.



>      [mm] |:(a^{2}-ab) [/mm]


Aber jetzt wird durch Null geteilt. Das ist der Knackpunkt.


FRED


>  2=1
>  Guten Morgen,
>  
> mir hat gestern der Vater eines meiner Schüler obiges
> Rätsel gestellt.
>  
> Die Frage ist was ist falsch?
>  
> Ich muss sagen... Keine Ahnung! XD
>  
> Ich habe die Gleichung schon mit konkreten Zahlen
> ausprobiert. da kommt das richtige raus.
>  
> Meine erste Vermutung ist, dass wenn man a gleich b setzt
> muss man die Variablennamen auch gleich setzten. Also wenn
> a=b dann ersetzte b durch a oder a druch b.
>  
> Also müsste man dann a=b [mm]\gdw[/mm] a=a bzw. b=b
>  
> und dann so weiter rechnen und in jeder
> äquivalenzumformung wieder für a dann b nehmen bzw.
> anderst rum.
>  
> Was sagt ihr dazu?
>  
> Danke schonmal. :-)
>  
> Ich hoffe wir können das Rätsel gemeinsam lösen.
>  
> LG
>  Ali
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de