www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Gleichung der Tangente
Gleichung der Tangente < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung der Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Do 26.04.2007
Autor: mathedude

Aufgabe
Stellen Sie die Gleichung der Tangente an die Parabel y= -1/2x² + 1 auf, welche die Parabel im Punkt [mm] P=(1;y_0) [/mm] berührt

Finde bei dieser Aufgabe den Einstieg nicht, hat mir jemand einen Tip?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichung der Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 Do 26.04.2007
Autor: M.Rex

Hallo.> Stellen Sie die Gleichung der Tangente an die Parabel y=
> -1/2x² + 1 auf, welche die Parabel im Punkt [mm]P=(1;y)[/mm]
> berührt

Zuerst mal brauchst du den Wert für y=f(1)
Hierzu berechne mal f(1).

Dann sollst du eine Tangente der Form t(x)=mx+b bestimmen.

Dazu brauchst du dann die Werte für m und b.

Zuerst mal zu m.

Da die Gerade eine Tangente am Graphen im Punkt 1/f(1) ist, hat sie die selbe Steigung, wie der Graph an der Stelle 1.

Dazu berechne mal die Ableitung..
f'(x)=-x.

Also f'(1)=-1.

Das heisst der Graph hat am Punkt 1/f(1) die Steigung -1.

Somit gilt auch für die Tangente: m=-1

Jetzt weisst du, dass

t(x)=-1x+b

Jetzt soll dieser Graph auch durch p(1/f(1)) gehen, also
f(1)=-1*1+b

Daraus bestimmst du jetzt dein b, denn alle anderen Werte sind bekannt (von dir errechnet)

Marius

Bezug
                
Bezug
Gleichung der Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Do 26.04.2007
Autor: mathedude

Besten Dank für die Antwort. Komme aber trotz deiner Beschreibung nicht weiter..


>Zuerst mal brauchst du den Wert für y=f(1)
>Hierzu berechne mal f(1).

Hier rechnete ich folgendes...

y = -1/2*1² + 1 + 1 = 1.5

Wie komme ich jetzt jedoch zu m und b? - Kannst du mir das bitte noch ein bisschen näher erläutern?

Bezug
                        
Bezug
Gleichung der Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Do 26.04.2007
Autor: musicandi88

Hallo,

die Tangentensteigung an der gesuchten Stelle x=1 ist der Wert der 1. Ableitung an eben dieser Stelle.
Die 1. Ableitung gibt ja nichts anderes als über die Steigung von f(x) Auskunkt.

[mm] f(x)=\bruch{-x^2}{2}+1 [/mm] ist unsere Funktion
f'(x)=-x ist die 1. Ableitung

Jetzt brauchen wir f'(1)=m ...ist die Steigung unsere Tangente

f'(1)=-1=m

P(1;f(1)) Berechnen wir noch schnell f(1), brauchen wir ja gleich

[mm] f(1)=\bruch{1}{2} \Rightarrow P(1;\bruch{1}{2}) [/mm]

Folgendes wissen wir bereits von unserer Tangenten t:

t: y=-x+b setzen wir nun die Koordinaten von P ein, um b zu ermitteln, da ja [mm] P\in [/mm] t

[mm] \rightarrow \bruch{1}{2}=-1+b [/mm]
[mm] \gdw b=\bruch{3}{2} [/mm]

Unsere Tangentengleichung lautet also:

t: [mm] y=-x+\bruch{3}{2} [/mm]

Liebe Grüße
Andreas


Bezug
                                
Bezug
Gleichung der Tangente: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 Do 26.04.2007
Autor: mathedude

Besten Dank! Hat mir weitergeholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de