www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Gleichung komplexer Zahlen
Gleichung komplexer Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung komplexer Zahlen: Lösung?
Status: (Frage) beantwortet Status 
Datum: 10:52 Fr 09.12.2005
Autor: sunshinenight

Hallo, habe Probleme mit dem Lösen von drei komplexen Gleichungen

a) z³+2z²+4z=0

hier habe ich noch alle Lösungen, wenn sie denn stimmen
[mm] z_{1}=0 [/mm] ; [mm] z_{2}=-1+\wurzel{3} [/mm] ; [mm] z_{3}=-1-\wurzel{3} [/mm]

b) [mm] z²-2(1-\wurzel{3}i)z-4\wurzel{3}i=0 [/mm]

bin erstmal mit der Lösungsformel rangegangen.
[mm] z_{1/2}=1-\wurzel{3}i \pm \wurzel{-2+2\wurzel{3}i} [/mm]
hier komme ich nicht weiter bzw weiss auch gar nicht, ob das richtig ist.

c) [mm] z^{6}+2z³+1=0 [/mm]

hier wäre ich dankbar, wenn mir jemand einen Ansatz geben könnte!

mfg sunshinenight

        
Bezug
Gleichung komplexer Zahlen: Korrekturen + Tipp
Status: (Antwort) fertig Status 
Datum: 11:26 Fr 09.12.2005
Autor: Roadrunner

Hallo sunshinenight!


> a) z³+2z²+4z=0
>  
> hier habe ich noch alle Lösungen, wenn sie denn stimmen
> [mm]z_{1}=0[/mm] ; [mm]z_{2}=-1+\wurzel{3}[/mm] ; [mm]z_{3}=-1-\wurzel{3}[/mm]

Hier hast Du Dich aber nur vertippt, oder?

[mm] $z_2 [/mm] \ = \ [mm] -1+\red{i}*\wurzel{3}$ [/mm]

[mm] $z_3 [/mm] \ = \ [mm] -1-\red{i}*\wurzel{3}$ [/mm]



> b) [mm]z²-2(1-\wurzel{3}i)z-4\wurzel{3}i=0[/mm]
>  
> bin erstmal mit der Lösungsformel rangegangen.
> [mm]z_{1/2}=1-\wurzel{3}i \pm \wurzel{-2+2\wurzel{3}i}[/mm]
> hier komme ich nicht weiter bzw weiss auch gar nicht, ob das
> richtig ist.

[ok] Das ist soweit richtig.

Tipp:

[mm] $\wurzel{-2+2\wurzel{3}i} [/mm] \ = \ [mm] \left(-2+2\wurzel{3}i\right)^{\bruch{1}{2}} [/mm] \ = \ [mm] \left(4*e^{i*120°}\right)^{\bruch{1}{2}} [/mm] \ = \ [mm] \left[4*\left(\cos(120°)+i*\sin(120°)\right)\right]^{\bruch{1}{2}} [/mm] \ = \ ...$

Nun weiter mit der []Moivre-Formel ...


  

> c) [mm]z^{6}+2z³+1=0[/mm]

Substituiere: $t \ := \ [mm] z^3$ [/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
Gleichung komplexer Zahlen: Korrektur + Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:49 Fr 09.12.2005
Autor: sunshinenight

ja bei a) hatte ich das i vergessen im Eifer des Gefechts :-)

für b) habe ich dank deiner Hilfe die Lösungen
[mm] z_{1}=2 [/mm] und
[mm] z_{2}=-2\wurzel{3}i [/mm]

c) habe ich auch noch fix durchgerechnet und für t=-1
wenn ich mich mit dem Minus jetzt nicht vertan habe, dann erhält man
[mm] z_{0}=-1 [/mm]
[mm] z_{1}=\bruch{1}{2}(1-\wurzel{3}i) [/mm]
[mm] z_{2}=\bruch{1}{2}(1+\wurzel{3}i) [/mm]

Rückfrage meine ich jetzt hier nur damit, dass ich gern wissen würde, ob die Ergebnisse stimmen.

@Roadrunner vielen Dank für deine Hilfe

mfg sunshinenight

Bezug
                        
Bezug
Gleichung komplexer Zahlen: Congrats!
Status: (Antwort) fertig Status 
Datum: 14:37 Fr 09.12.2005
Autor: banachella

Hallo!

> für b) habe ich dank deiner Hilfe die Lösungen
>  [mm]z_{1}=2[/mm] und
>  [mm]z_{2}=-2\wurzel{3}i[/mm]

[daumenhoch]
  

> c) habe ich auch noch fix durchgerechnet und für t=-1
>  wenn ich mich mit dem Minus jetzt nicht vertan habe, dann
> erhält man
>  [mm]z_{0}=-1[/mm]
>  [mm]z_{1}=\bruch{1}{2}(1-\wurzel{3}i)[/mm]
>  [mm]z_{2}=\bruch{1}{2}(1+\wurzel{3}i)[/mm]

[daumenhoch]

Stimmt alles!

Gruß, banachella


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de