Gleichung lösen < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:02 So 19.03.2017 | Autor: | mrmrmr |
Aufgabe | Gegeben: [mm] $m_0$ [/mm] konstante Masse, [mm] $\alpha$ [/mm] konstante Masse pro Sekunde, [mm] $v_T$ [/mm] konstante Geschwindigkeit, $t$ Zeit, $v(t)$ Geschwindigkeit
Löse [mm] $(m_0 [/mm] - [mm] \alpha [/mm] t) [mm] \dot{v}(t) [/mm] = [mm] \alpha v_T$ [/mm] nach $v(t)$ auf. |
Hi,
ich möchte eine Lösung der Gleichung ermitteln.
Dazu stelle ich zunächst um: [mm] $\dot{v}(t) [/mm] = [mm] \frac{\alpha v_T}{m_0 - \alpha t}$
[/mm]
Wie geht das nun weiter?
Wenn ich die rechte Seite von $0$ bis $t$ integriere, kommt das richtige Ergebnis raus:
[mm] $\alpha v_T \int^t_0 \frac{1}{m_0 - \alpha t'} \mathrm{d} [/mm] t' = [mm] \alpha v_T \left[ - \frac{1}{\alpha} \log(m_0 - \alpha t') \right]^{t' = t}_{t' = 0} [/mm] = - [mm] v_T \left( \log(m_0 - \alpha t) - \log(m_0) \right) [/mm] = [mm] v_T \log \left( \frac{m_0}{m_0 - \alpha t} \right) [/mm] $
Aber ich habe keine Ahnung, wieso ich das von $0$ bis $t$ integriere.
Angenommen, ich bestimme nur irgendeine Stammfunktion der rechten Seite, indem ich das unbestimmte Integral löse: $v(t) = - [mm] v_T \log (m_0 [/mm] - [mm] \alpha [/mm] t)$. Wenn man die Einheiten vergisst, wäre das doch auch eine Lösung, oder? Aber wenn man sich die Einheiten an sieht, hat man [mm] $\frac{m}{s} \log(kg)$ [/mm] -- das macht wenig Sinn? Wieso darf ich das so nicht lösen; fehlen mir Mathe Basics?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo!
Auf der linken Seite integrierst du ja auch. Aber was sollte denn generell sowas wie [mm] $\int \dot v\,dt$ [/mm] darstellen? Sieht zwar aus wie ne Geschwindigkeit, aber physikalisch wird doch erst dann ein Schuh draus, wenn du über eine gewisse Zeit integrierst, also [mm] $\int_{t_1}^{t_2} \dot v\,dt$ [/mm] . Das macht mehr Sinn, denn das ist der Geschwindigkeitszuwachs über den Zeitraum.
Das ist eigentlich immer so, nur die Einheit im Logarithmus macht dir das hier sehr deutlich.
|
|
|
|
|
Hallo,
> Wenn ich die rechte Seite von [mm]0[/mm] bis [mm]t[/mm] integriere, kommt das
> richtige Ergebnis raus:
> [mm]\alpha v_T \int^t_0 \frac{1}{m_0 - \alpha t'} \mathrm{d} t' = \alpha v_T \left[ - \frac{1}{\alpha} \log(m_0 - \alpha t') \right]^{t' = t}_{t' = 0} = - v_T \left( \log(m_0 - \alpha t) - \log(m_0) \right) = v_T \log \left( \frac{m_0}{m_0 - \alpha t} \right)[/mm]
>
> Aber ich habe keine Ahnung, wieso ich das von [mm]0[/mm] bis [mm]t[/mm]
> integriere.
Man nennt es Trennung der Variablen...
Gruß, Diophant
|
|
|
|