www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Gleichung lösen
Gleichung lösen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lösen: logarithmische Gleichung
Status: (Frage) beantwortet Status 
Datum: 12:26 Sa 04.12.2004
Autor: finlo

Es geht darum, die kleinste ganze Zahl n zu finden, so dass [mm] n^n [/mm] großer als 5x10^1000000 wird.
Ich habe etwa so angefangen, aber komme nicht weiter:
[mm] nlog(n)=log(5)+10^6 [/mm]

Kann mir jemand helfen? Ich werde ihm sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Gleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 Sa 04.12.2004
Autor: Bastiane


> Es geht darum, die kleinste ganze Zahl n zu finden, so dass
> [mm]n^n[/mm] großer als 5x10^1000000 wird.
>  Ich habe etwa so angefangen, aber komme nicht weiter:
>  [mm][mm] nlog(n)=log(5)+10^6 [/mm]

Hallo!
Ich glaube, du hast dich da ein bisschen vertippt: meinst du [mm] 5*10^{1000000} [/mm] oder wohl eher [mm] 5*10^6=5*1000000? [/mm]

Obwohl - mmh, nach deiner Rechnung, würde das vielleicht doch eher dem ersten entsprechen. Mmh, jetzt bin ich mir gar nicht mehr sicher.

Viele Grüße
Bastiane
[haee]


Bezug
                
Bezug
Gleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Sa 04.12.2004
Autor: finlo

Ja, es handelt sich um 5.10^1000000(5 mal 10 hoch eine Million). Also n finden so dass [mm] n^n>5.10^1000000. [/mm]


Bezug
        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Sa 04.12.2004
Autor: FriedrichLaher

Hallo, Sembi,

ich nehme mal an mit log meinst Du den Dekadischen Logarithmus.

Daß das nur mit Näherungsverfahren lösbar ist dürfte ja klar sein.
Da
würd ich zunächst einmal den log5 als vernachlässigbar betrachen dann wird daraus

[mm] $n*\log [/mm] n [mm] \approx 10^6$ $\log [/mm] n = [mm] 10^6 [/mm] / n$  was leider immer noch läsitg ist
daher
Ansatz $n = [mm] 10^x [/mm] $   womit [mm] $x*10^x [/mm] = [mm] 10^6$ [/mm] entsteht
für
das Kopfrechnung $ 5 < x < 6$ zeigt das wäre dann wohl ein hoffentlich guter
Anfangswert für ein Näherungsverfahren

Bezug
                
Bezug
Gleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Sa 04.12.2004
Autor: finlo

Hallo FriedrichLaher,
wie kommst du auf [mm] x.10^x=10^6 [/mm] ??
Danke für deine schnelle Antwort.
Kannst du die Antwort ein bisschen vertiefen?
Danke im Voraus.

Bezug
                
Bezug
Gleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:34 Sa 04.12.2004
Autor: finlo

schon gut FriedrichLaher, ich das herausgefunden. Deine Antwort hat geholfen, Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de