www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Gleichung lösen
Gleichung lösen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 So 21.04.2013
Autor: Mathe-Andi

Hallo,

ich muss die Probe einer DGL machen, und bin schon fast fertig, ich glaube ich hänge am letzten Schritt. Ich möchte zeigen, dass:

[mm] -c*\delta^{2}*e^{-\delta*t}*cos(\omega*t)-c*\omega^{2}*e^{-\delta*t}*cos(\omega*t)+\omega^{2}+\delta^{2}=0 [/mm]

Wenn ich die letzten beiden Ausdrücke auf die rechte Seite hole:


[mm] -c*\delta^{2}*e^{-\delta*t}*cos(\omega*t)-c*\omega^{2}*e^{-\delta*t}*cos(\omega*t)=-\omega^{2}-\delta^{2} [/mm]

und nun ausklammere sieht man den gemeinsamen Faktor, aber lösen kann ich das nicht...

[mm] c*e^{-\delta*t}*cos(\omega*t)[-\delta^{2}-\omega^{2}]=-\omega^{2}-\delta^{2} [/mm]

Damit der Ausdruck gilt, muss [mm] c*e^{-\delta*t}*cos(\omega*t)=1 [/mm] sein. Irgendwie hänge ich hier!

Habt ihr einen Tip für mich?


Gruß, Andreas


        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 So 21.04.2013
Autor: steppenhahn

Hallo,

> Hallo,
>  
> ich muss die Probe einer DGL machen, und bin schon fast
> fertig, ich glaube ich hänge am letzten Schritt. Ich
> möchte zeigen, dass:
>  
> [mm]-c*\delta^{2}*e^{-\delta*t}*cos(\omega*t)-c*\omega^{2}*e^{-\delta*t}*cos(\omega*t)+\omega^{2}+\delta^{2}=0[/mm]
>  
> Wenn ich die letzten beiden Ausdrücke auf die rechte Seite
> hole:
>  
>
> [mm]-c*\delta^{2}*e^{-\delta*t}*cos(\omega*t)-c*\omega^{2}*e^{-\delta*t}*cos(\omega*t)=-\omega^{2}-\delta^{2}[/mm]
>  
> und nun ausklammere sieht man den gemeinsamen Faktor, aber
> lösen kann ich das nicht...
>  
> [mm]c*e^{-\delta*t}*cos(\omega*t)[-\delta^{2}-\omega^{2}]=-\omega^{2}-\delta^{2}[/mm]
>  
> Damit der Ausdruck gilt, muss
> [mm]c*e^{-\delta*t}*cos(\omega*t)=1[/mm] sein.   (*)


Oder [mm] $\delta [/mm] = [mm] \pm\omega$! [/mm]

> Irgendwie hänge ich
> hier!

Du hast alles richtig umgeformt.
Der Term auf der linken Seite von (*) ist nicht konstant 1. Wenn also nicht [mm] $\delta [/mm] = [mm] \pm\omega$ [/mm] gilt, dann ist es eine falsche Aussage.



Viele Grüße,
Stefan

Bezug
                
Bezug
Gleichung lösen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:24 So 21.04.2013
Autor: Mathe-Andi

Aufgabe
Es soll die Probe gemacht werden für die DGL [mm] x^{**}+\bruch{b}{m}x^{*}+\bruch{c_{F}}{m}=0 [/mm] mit der Funktion [mm] x=c*e^{-\delta*t}*cos(\omega*t) [/mm] sowie deren zeitlichen Ableitungen [mm] x^{*} [/mm] und [mm] x^{**}. [/mm] Beachten Sie, dass [mm] w^{2}=w_{0}^{2}-\delta^{2}, w_{0}^{2}=\bruch{c_{F}}{m} [/mm] und [mm] \delta=\bruch{b}{2m} [/mm] gilt.


Das hieße, dass die Probe nicht erfüllt ist. Das macht mich stutzig. Ich habe oben mal die Aufgabe abgetippt. Die Ableitungen habe ich von Hand gemacht und mit einem Ableitungsrechner gegenkontrolliert. Die Ergebnisse stimmten überein. Ich habe auch auf Vorzeichen und Klammern geachtet. Das ist merkwürdig, normalerweise gehen solche Proben immer auf.

erste Ableitung:

[mm] x^{*}=-c*\delta*e^{-\delta*t}*cos(\omega*t)-c*\omega*e^{-\delta*t}*sin(\omega*t) [/mm]

zweite Ableitung:

[mm] x^{**}=c*\delta^{2}*e^{-\delta*t}*cos(\omega*t)-c*\omega^{2}*e^{-\delta*t}*cos(\omega*t)+2c*\omega*\delta*e^{-\delta*t}*sin(\omega*t) [/mm]

Aus den Angaben habe ich umgeformt wie folgt:

[mm] \bruch{b}{m}=2\delta [/mm]

[mm] \bruch{c_{F}}{m}=\omega^{2}+\delta^{2} [/mm]



Gruß, Andreas



Bezug
                        
Bezug
Gleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:34 Mo 22.04.2013
Autor: Mathe-Andi

Obige Frage hat sich geklärt. Die Probe ging so wirklich nicht auf. Wir haben heute eine Rundmail bekommen, dass in der Aufgabenstellung ein x unterschlagen wurde.

Die DGL lautet nun:

[mm] x^{**}+\bruch{b}{m}x^{*}+\bruch{c_{F}}{m}x=0 [/mm]

Nun eliminieren sich die Terme im letzten Schritt alle und es kommt der wahre Ausdruck 0=0 heraus.


Gruß, Andreas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de