www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Gleichung mit mehreren Variablen
Gleichung mit mehreren Variablen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung mit mehreren Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Mi 10.03.2004
Autor: Josef

Wie kann man folgendes Gleichungssystem lösen?

A: [mm]\bruch{x-y}{3\wurzel{x}-3\wurzel{y}}[/mm] = 3
B: [mm]\wurzel{\bruch{xy}{4}}[/mm] = 10

Lösung =
[mm]x_1[/mm] = 25
[mm]x_2[/mm] = 16

[mm]y_1[/mm] = 16
[mm]y_2[/mm] = 25


Mein Ansatz:

Bei Gleichung A Nenner beseitigen.
Gleichung B quadrieren.

A: x-y = 3(3[mm]\wurzel{x}[/mm]-3[mm]\wurzel{y}[/mm])
B:[mm] \bruch{xy}{4}[/mm] = 100

A: x-y = 9[mm]\wurzel{x}[/mm]-9[mm]\wurzel{y}[/mm]
B: xy = 400

jetzt kann ich Gleichung B noch durch y dividieren.

A: x-y = 9[mm]\wurzel{x}[/mm]-9[mm]\wurzel{y}[/mm]
B: x = [mm]\bruch{400}{y}[/mm]

Gleichung B in Gleichung A einsetzen:

[mm]\bruch{400}{y}[/mm]-y = 9[mm]\wurzel{\bruch{400}{y}}[/mm]-9[mm]\wurzel{y}[/mm]

Wie rechne ich  weiter?  Beim weiteren Quadrieren verliere ich den Überblick.

        
Bezug
Gleichung mit mehreren Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 Mi 10.03.2004
Autor: Oliver

Hallo Josef,

Deine Rechnungen soweit waren zwar richtig, machen die Lösung aber schwieriger als es sein müsste.

Fangen wir nochmal mit
A: [mm]\bruch{x-y}{3\wurzel{x}-3\wurzel{y}} = 3[/mm]
B: [mm]\wurzel{\bruch{xy}{4}} = 10[/mm]
an.

Gleichung A ist ein guter Kandidat für die 3. Binomische Formel, denn aus
[mm]\bruch{x-y}{3\wurzel{x}-3\wurzel{y}} = 3[/mm] folgt
[mm]\bruch{(\wurzel{x}-\wurzel{y})(\wurzel{x}+\wurzel{y})}{\wurzel{x}-\wurzel{y}} = 9[/mm] und somit
[mm]\wurzel{x}+\wurzel{y} = 9[/mm].

Auch in Gleichung lassen wir erst einmal die Wurzel stehen, aus
[mm]\wurzel{\bruch{xy}{4}} = 10[/mm] folgt dann
[mm]\bruch{\wurzel{x}\wurzel{y}}{\wurzel{4}} = 10[/mm] und somit
[mm]\wurzel{x}\wurzel{y}} = 20[/mm]

Jetzt probier' mal (wie Du es vorher auch schon machen wolltest) die zweite Gleichung in die erste einzusetzen ... Du wirst sehen es wird einfacher gehen. Du kommst dann ziemlich schnell auf eine quadratische Gleichung, die Du anschließend mit der pq-Formel lösen kannst.

Sag' mal Bescheid, ob es geklappt hat und poste hier bitte die noch fehlenden Schritte, dann schauen wir drüber.

Viel Erfolg
Oliver


Bezug
                
Bezug
Gleichung mit mehreren Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 Mi 10.03.2004
Autor: Josef

Hallo Oliver,

ich erkenne nicht die 3. Binomische Formel.
Mir fällt es leichter, die erste Gleichung in die zweite Gleichung einzusetzen.  
Der weitere Rechenweg ist mir klar.

[mm]\wurzel{x}[/mm] = 9 - [mm]\wurzel{y}[/mm]

(9 - [mm]\wurzel{y}[/mm])* [mm]\wurzel{y}[/mm]= 20


81y = 400+40y+y²
y²-41y+400 = 0
[mm] y_1 [/mm] = 25
[mm] y_2 [/mm] = -16
                                            

Bezug
                        
Bezug
Gleichung mit mehreren Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Mi 10.03.2004
Autor: Marc

Hallo Josef,

> ich erkenne nicht die 3. Binomische Formel.

da gehört auch ein bisschen Übung dazu:

[mm] $x-y=\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2=(\sqrt{x}-\sqrt{y})*(\sqrt{x}+\sqrt{y})$ [/mm]

Das gilt natürlich nur für [mm] $x,y\ge [/mm] 0$, das ist hier aber ja der Fall, da diese Variablen bereits im Ausgangsterm unter Wurzeln stehen.

>  Mir fällt es leichter, die erste Gleichung in die zweite
> Gleichung einzusetzen.  

Okay, je nach Belieben...

> Der weitere Rechenweg ist mir klar.
>  
> [mm]\wurzel{x}[/mm] = 9 - [mm]\wurzel{y}[/mm]
>  
> (9 - [mm]\wurzel{y}[/mm])* [mm]\wurzel{y}[/mm]= 20
>  
>
> 81y = 400+40y+y²
>  y²-41y+400 = 0
>  [mm] y_1 [/mm] = 25
>  [mm] y_2 [/mm] = -16

Eine negative Lösung für $y$ wäre aus den oben angesprochenen Gründen nicht definiert. Aber du hast --hoffe ich-- nur das Vorzeichen aus Versehen dazugeschrieben. Die MBp/q-Formel ergibt ja:

[mm] $y_{1,2}=20{,}5\pm4{,}5 \gdw y_1=25 \;\;\vee\;\; y_2=16$ [/mm]

Bleiben jetzt noch Fragen offen? Falls ja, melde dich einfach wieder.

Alles Gute,
Marc.

Bezug
                                
Bezug
Gleichung mit mehreren Variablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Do 11.03.2004
Autor: Josef

Hallo Marc,
Hallo Oliver,

ich habe die Aufgabe noch einmal nachgerechnet. Ich habe es jetzt verstanden.
Vielen Dank für eure Hilfe und für die guten Rechentipps!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de