www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Gleichung nach x auflösen
Gleichung nach x auflösen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung nach x auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Do 28.06.2007
Autor: Mir.I.Am

Aufgabe
Lösen Sie die Gleichung [mm] 1=4x^{3}-2x+2 [/mm] nach x auf.

Salle,
Mein Ansatz sieht so aus:
[mm] 0=x(4x^{2}-2+1/x) [/mm]
aber nun stecke ich fest. Hat jemand einen Vorschlag, wie ich weitermachen könnte? Hilft eventuell Substitution weiter (wobei ich nicht mehr genau weiß, wie Substitution funktioniert)?

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Gleichung nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Do 28.06.2007
Autor: Slartibartfast

Hallo Mir.I.Am,

die Lösung heißt Polynomdivision.
Bring die 1 auf die rechte Seite, rate eine Nullstelle und teile die rechte Seite durch (x-geratene Nullstelle). Funktioniert genauso wie das schriftliche Dividieren aus der 4. Klasse.

Grüße
Slartibartfast


ok, man sollte die Aufgabe erst mal anschauen bevor man groß erzählt. Ich seh grad, dass es nur eine Nullstelle gibt und die zu erraten ist unmöglich. Vllt hat jemand anders ne tolle Idee.

Bezug
        
Bezug
Gleichung nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Do 28.06.2007
Autor: Zwerglein

Hi, Miriam,

im Prinzip hat Slartibartfast ja Recht, aber in diesem Fall nützt Dir sein Tipp leider nichts, denn es gibt keine ganzzahlige Nullstelle.
Wenn Du Dich also nicht vertippt hast, bleibt Dir nichts anderes übrig, als die Nullstelle näherungsweise zu ermitteln  (es sei denn, Du kennst die Formel von Cardano, aber das glaube ich eher nicht!).

mfG!
Zwerglein

Bezug
                
Bezug
Gleichung nach x auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 Do 28.06.2007
Autor: Mir.I.Am

Ok, danke vielmals euch beiden! Darauf, dass man ein Näherungsverfahren benutzen könnte, bin ich natürlich nicht gekommen. =)

Bezug
                        
Bezug
Gleichung nach x auflösen: Näherungsverfahren
Status: (Frage) beantwortet Status 
Datum: 23:38 Do 28.06.2007
Autor: Mir.I.Am

Hey,
ich habe nun das Newtonverfahren angewandt und muss feststellen, dass es nicht klappt. Im Buch steht, dass die obige Aufgabe ein Nullstellenproblem ist, das mithilfe des Newtonverfahrens gelöst werden kann.
Ich habe leider keine Ahnung wie. Ich habe den Startwert [mm] x_{1}=-1.5 [/mm] genommen. Die Folge, die ich bekomme ist etwas verwirrend:
[mm] x_{2}=-1.169 [/mm]
[mm] x_{3}=-0.603 [/mm]
[mm] x_{4}=-1.274 [/mm]
[mm] x_{5}=-0.881 [/mm]
Ich habe die Aufgabe mit Maple gelöst und weiß daher, dass die richtige Antwort [mm] x_{5} [/mm] ist, also -0.88. Aber wieso springt das Newtonverfahren hier so umher und wie kann ich (wenn ich maple nicht benutzt hätte) erkennen, welche Lösung die richtige ist?

Ich habe diese Frage in keinem anderen Forum gestellt.

Bezug
                                
Bezug
Gleichung nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:58 Fr 29.06.2007
Autor: Kroni

Hi,

guck dir mal []diesen Link der Wikipedia an. Dort ist eine recht gelungene Animation zu sehen, wodurch die Nullstelle ermittelt wird.

Es ist so, dass man immer um die Nullstelle umherpendelt.

Hast du erst eine NS(Nullstelle) gefunden, die größer als die "echte" NS ist, so folgt darauf eine NS, die kleiner als die "echte" NS ist.
Daraufhin folgt wieder eine, die größer ist und so fort.

Wie du jetzt die "richtige" Nullstelle herausfindest?

Ich schätze, wenn du das Verfahren noch ein bis zweimal wiederholst, so wird der Unterschied zwischen den beiden Nullstellen, die einmal größer und einmal kleiner als die "echte" NS ist, nicht so groß ausfallen.

Das ist dann das Zeichen für dich: Ich bin fertig, und kann das Intervall angeben, indem die NS liegt.

LG

Kroni

Bezug
                                
Bezug
Gleichung nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Fr 29.06.2007
Autor: Zwerglein

Hi, Miriam,

Deine Werte erscheinen mir doch ungewöhnlich!

(1) Warum nimmst Du als Startwert -1,5 und nicht -1?!

(2) Da die Kurve im betreffenden Bereich echt mon. zunimmt, kommst Du m.E. auf jeden Fall "von links" (und nicht "alternierend") an die Nullstelle ran! M.E. liegen da einfach Rechenfehler vor!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de