www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Gleichung zeigen
Gleichung zeigen < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung zeigen: Beweis korrekt?
Status: (Frage) beantwortet Status 
Datum: 01:42 Sa 26.11.2011
Autor: dennis2

Aufgabe
Zeige, daß folgende Aussage gilt:

[mm] $\sum_{i=1}^{n}(X_i-\overline{X})^2=\sum_{i=1}^{n}(X_i-a)^2-n(\overline{X}-a)^2, a\in\mathbb [/mm] R$

Hallo, liebe Helferinnen & Helfer!

Ich habe folgenden Beweis ausgeführt, von dem ich sehr gerne wüßte, ob er so in Ordnung ist. Ich habe das einfach sehr strikt versucht auszurechnen.

Beweis:

Sei [mm] $a\in\mathbb [/mm] R$ beliebig.

LHS

[mm] LHS=\sum_{i=1}^{n}X_i^2-2X_i\overline{X}+\overline{X}^2$ [/mm]
  [mm] $=X_1^2-2X_1\overline{X}+\overline{X}^2+...+X_n^2-2X_n\overline{X}+\overline{X}^2$ [/mm]
  [mm] $=X_1^2-2X_1\frac{1}{n}\sum_{i=1}^{n}X_i+\frac{1}{n^2}\left(\sum_{i=1}^{n}X_i\right)^2+...+X_n^2-2X_n\frac{1}{n}\sum_{i=1}^{n}X_i+\frac{1}{n^2}\left(\sum_{i=1}^{n}X_i\right)^2$ [/mm]
  [mm] $=X_1^2+...+X_n^2-2\frac{1}{n}\sum_{i=1}^{n}X_i(X_1+...+X_n)+\frac{1}{n}\left(\sum_{i=1}^{n}X_i\right)^2$ [/mm]
  [mm] $=\sum_{i=1}^{n}X_i^2-2\overline{X}\sum_{i=1}^{n}X_i+\frac{1}{n}\left(\sum_{i=1}^{n}X_i\right)^2$ [/mm]


RHS

[mm] RHS=\overbrace{\sum_{i=1}^{n}(X_i^2-2X_ia+a^2)}^{=:A}-[\overbrace{n(\overline{X}^2-2\overline{X}a+a^2)}^{=:B}]$ [/mm]

A

[mm] $A=(X_1^2-2X_1a+a^2)+...+(X_n^2-2X_na+a^2)$ [/mm]
[mm] $=X_1^2+...+X_n^2-2a(X_1+...+X_n)+na^2$ [/mm]
[mm] $=\sum_{i=1}^{n}X_i^2-2a\sum_{i=1}^{n}X_i+na^2$ [/mm]

B

[mm] $B=n\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right)^2-n2\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right)a+na^2$ [/mm]
[mm] $=\frac{1}{n}\left(\sum_{i=1}^{n}X_i\right)^2-2a\sum_{i=1}^{n}X_i+na^2$ [/mm]


A-B

[mm] $\sum_{i=1}^{n}X_i^2-2a\sum_{i=1}^{n}X_i+na^2-\frac{1}{n}\left(\sum_{i=1}^{n}X_i\right)^2+2a\sum_{i=1}^{n}X_i-na^2$ [/mm]
[mm] $=\sum_{i=1}^{n}X_i^2-\frac{1}{n}\left(\sum_{i=1}^{n}X_i\right)^2$ [/mm]


LHS=RHS

[mm] $\overbrace{\sum_{i=1}^{n}X_i^2}^{\geq 0}-2\overline{X}\sum_{i=1}^{n}X_i+\overbrace{\frac{1}{n}\left(\sum_{i=1}^{n}X_i\right)^2}^{\geq 0}=\sum_{i=1}^{n}X_i^2-\frac{1}{n}\left(\sum_{i=1}^{n}X_i\right)^2$ [/mm]

[mm] $\Leftrightarrow -2\overline{X}\sum_{i=1}^{n}X_i+\frac{2}{n}\left(\sum_{i=1}^{n}X_i\right)^2=0$ [/mm]

[mm] $\Leftrightarrow -2\overline{X}\sum_{i=1}^{n}X_i=-\frac{2}{n}\left(\sum_{i=1}^{n}X_i\right)^2$ [/mm]

Dies ist der Fall, denn:

[mm] $-2\overline{X}\sum_{i=1}^{n}X_i=-2\frac{1}{n}\sum_{i=1}^{n}X_i\sum_{i=1}^{n}X_i=-\frac{2}{n}\left(\sum_{i=1}^{n}X_i\right)^2$ [/mm]


[mm] $\Box$ [/mm]


So, das ist mein Beweis.

Wäre nett, wenn mir jemand ein Feedback geben würde!


Ein schönes Wochenende (mit einem besinnlichen 1. Advent) und liebe Grüße!


Dennis



PS. Diese Frage habe ich nur hier gestellt und in keinem anderen Forum.

        
Bezug
Gleichung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:53 Sa 26.11.2011
Autor: kamaleonti

Hallo dennis2,

ein sehr ordentlich aufgeschriebener Beweis und so wie ich es sehe, fehlerfrei [daumenhoch]!

Nur ein kleiner Hinweis:

Summen wie [mm] $\sum_{i=1}^{n}X_i^2-2X_i\overline{X}+\overline{X}^2$ [/mm] kannst Du direkt auseinanderziehen, dann reduziert sich die Schreibarbeit.

Gute Nacht! :-)

Bezug
                
Bezug
Gleichung zeigen: Thank you!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Sa 26.11.2011
Autor: dennis2

Dankesehr für Dein Feedback und ich freue mich, daß ich mit meinem Beweis richtig liege.

(Danke auch für Deinen Hinweis, was die Reduzierung der Schreibarbeit betrifft. Solche Hinweis sind natürlich immer gern gesehen. :-))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de