www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Gleichungen
Gleichungen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen: Gleichung 4. Grades
Status: (Frage) beantwortet Status 
Datum: 10:17 So 03.12.2006
Autor: santor

Hallo, kann mir jemand sagen, wie ich die Gleichung: [mm] x^4+3x^3+x^2+6x-2=0 [/mm] lösen kann? Eine [mm] Substitution(z=x^2) [/mm] ist nicht möglich, da es ungerade Exponenten gibt.

Die Gleichung [mm] x^4=1 [/mm] hat 2 oder 4 Lösungen? Wenn man die vierte Wurzel zieht hätte man + oder - 1 als Lösung. Aber ich denke, da stimmt etwas nicht.

        
Bezug
Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 So 03.12.2006
Autor: santor

Wie sieht es dann bei [mm] x^5=1 [/mm] und [mm] x^6=1 [/mm] aus? Gibt es da 5 und 6 Lösungen?

Bezug
                
Bezug
Gleichungen: reell oder komplex
Status: (Antwort) fertig Status 
Datum: 10:36 So 03.12.2006
Autor: Loddar

Hallo santor!


Siehe oben (bzw. meine andere Antwort)... Im Komplexen gibt es hier 5 bzw. Lösungen.

Im Reellen lediglich eine (bei [mm] $x^5$) [/mm] bzw. zwei (bei [mm] $x^6$). [/mm]


Gruß
Loddar


Bezug
        
Bezug
Gleichungen: Probieren / Näherungsverfahren
Status: (Antwort) fertig Status 
Datum: 10:34 So 03.12.2006
Autor: Loddar

Hallo Santor!


> [mm]x^4+3x^3+x^2+6x-2=0[/mm] lösen kann?
> Eine Substitution [mm](z=x^2)[/mm] ist nicht möglich, da es ungerade Exponenten gibt.

Da hast Du schon mal Recht. Wenn es bei dieser Gleichung ganzzahlige Lösungen gibt, sind es die Teiler des Absolutgliedes (hier: $-2_$) beiderlei Vorzechen.

Also hieße das hier:  [mm] $\pm [/mm] 1, \ [mm] \pm [/mm] 2$


Diese vier möglichen Kandidaten lösen die Gleichung aber nicht, so dass hier lediglich noch Näherungsverfahren (wie z.B. MBNewton-Verfahren) verbleibt.

Ich habe erhalten:  [mm] $x_1 [/mm] \ [mm] \approx [/mm] \ -3.30$  sowie  [mm] $x_2 [/mm] \ [mm] \approx [/mm] \ 0.30$ .



> Die Gleichung [mm]x^4=1[/mm] hat 2 oder 4 Lösungen? Wenn man die
> vierte Wurzel zieht hätte man + oder - 1 als Lösung.

In der Menger [mm] $\IR$ [/mm] der reellen Zahlen hat diese Gleichung zwei Lösungen, namlich [mm] $x_{1/2} [/mm] \ = \ [mm] \pm [/mm] 1$ .

Im Komplexen (also in [mm] $\IC$) [/mm] gibt es allerdings vier Lösungen (wegen [mm] $x^{\red{4}}$ [/mm] ).


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de