www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Gleichungen Zeigen
Gleichungen Zeigen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen Zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 Do 25.10.2007
Autor: TheSaint

Aufgabe
Es seien zwei Mengen E,F gegeben mit Teilmengen [mm] A,B\subset [/mm] E und [mm] C,D\subset [/mm] F. Ferner sei f: [mm] E\to F;x\mapsto [/mm] f(x) eine Abbildung zwischen diesen Mengen.
Zeigen sie die Gleichungen:

(I) [mm] f(A\cap f^{-1}(C))=f(A)\cap [/mm] C
(II) [mm] f(A\cap [/mm] B) [mm] \subset f(A)\cap [/mm] f(B)
(III) [mm] f^{-1}(F\backslash [/mm] C) = E [mm] \backslash f^{-1}(C) [/mm]
(IIII) [mm] f(f^{-1}(D))\subset [/mm] D

Was wird hier verlangt? was bedeutet zeigen die die Gleichungen?

Steh voll aufm Schlauch...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichungen Zeigen: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:50 Do 25.10.2007
Autor: Jessil

Hey, also ich hab die gleichen Aufgaben zu lösen und weis auch net so wirklich was ich machen muss. Hab dann einfach mal ein bisschen umgeformt, aber ob das was ich gemacht hab stimmt kann ich nicht sagen.

> (I) [mm]f(A\cap f^{-1}(C)) =f(A)\cap[/mm] C

        
[mm] f(A)\cap [/mm] f [mm] f^{-1}(C))=f(A)\cap [/mm] C
[mm] f(A)\cap [/mm] e (C) [mm] =f(A)\capC [/mm]
[mm] f(A)\cap [/mm]  (C)   [mm] =f(A)\cap [/mm] C

und das wäre dann das gleiche, ob der Weg allerdings stimmt und das auch die Aufgabenstellung erfüllt weis ich auch nicht.


Bezug
        
Bezug
Gleichungen Zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Do 25.10.2007
Autor: korbinian

Hallo,

>  Zeigen sie die Gleichungen:
>  
> (I) [mm]f(A\cap f^{-1}(C))=f(A)\cap[/mm] C

>  Was wird hier verlangt? was bedeutet zeigen die die
> Gleichungen?

Auf beiden Seiten der Gleichung stehen Mengen. Zeige die Gleichung bedeutet die Gleichheit dieser Mengen muss nachgewiesen werden. Dies macht man oft in 2 Schritten:
Soll für die Mengen A und B A=B gezeigt werden so ist der
1.Schritt zu zeigen A [mm] \subset [/mm] B und der
2.Schritt zu zeigen B [mm] \subset [/mm] A
aus beiden folgt nun A=B.
Im konkreten Fall wirst du wohl auf die Definitionnen von [mm] f^{-1}(C)) [/mm] und [mm] f(A\cap f^{-1}(C)) [/mm] usw zurückgreifen müssen. Fangen wir mal an.

zuerst wollen wir [mm] f(A\cap f^{-1}(C)) \subset f(A)\cap [/mm] C zeigen.

Dazu sei y [mm] \in f(A\cap f^{-1}(C)) \Rightarrow [/mm] es gibt ein x [mm] \in A\cap f^{-1}(C) [/mm] mit f(x)=y.
x [mm] \in [/mm] A  [mm] \Rightarrow [/mm] y=f(x) [mm] \in [/mm] f(A)
x [mm] \in f^{-1}(C) \Rightarrow [/mm] y=f(x) [mm] \in [/mm] C
Aus den letzten beiden Zeilen folgt y [mm] \in f(A)\cap [/mm] C
So, vielleicht gelingt dir Rest nach diesem Muster selbst. Viel Erfolg (oder nochmal melden)
Gruß korbinian


Bezug
                
Bezug
Gleichungen Zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 Do 25.10.2007
Autor: TheSaint

Danke, jetzt habe ich immerhin ne vorstellung davon was von mir verlangt wird. Na dann, schauen wir mal ob ich der rest hinbekomme.

Bezug
                        
Bezug
Gleichungen Zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:34 Fr 26.10.2007
Autor: glebi

zu (III):

da [mm] f^{-1}(C) [/mm] erhalten bleibt brauchen wir ja nur zu zeigen das [mm] f^{-1}(F)=E [/mm] ist oder? und da [mm] E\toF [/mm] ist, ist es damit schon bewiesen oder?

zu (II) und (IIII): hier muss man nur nachweisen dass sie jeweils teilmengen sind, richtig?

Bezug
                                
Bezug
Gleichungen Zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:36 Fr 26.10.2007
Autor: glebi

ohmann verschrieben...

ich meine unter (II):

...da E [mm] \to [/mm] F ist, ist es damit schon bewiesen...

Bezug
                                        
Bezug
Gleichungen Zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Sa 27.10.2007
Autor: glebi

??=(

Bezug
                                                
Bezug
Gleichungen Zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:29 Sa 27.10.2007
Autor: sonne19



schreib deine Mitteilungen mal als frage...dann werden sie vielleicht schneller beantwortet... ;-)

Bezug
                
Bezug
Gleichungen Zeigen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:57 Sa 27.10.2007
Autor: sonne19

hallo!

also wenn man das ganze jetzt analog für die entgegengesetzte richtung macht also:
f(A) [mm] \wedge [/mm] C  [mm] \subset [/mm] f ( A [mm] \wedge [/mm] f^(-1) (C))
  

> Dazu sei y [mm] \in [/mm] f(A) [mm] \wedge [/mm] C  => [mm] \exists [/mm] x  [mm] \in [/mm]   A [mm] \wedge [/mm] f^ (-1)(C)  mit f(x)=y

>  x [mm]\in[/mm] A  [mm]\Rightarrow[/mm] y=f(x) [mm]\in[/mm] f(A) und
>  x [mm]\in f^ (-1) (C ) \Rightarrow[/mm] y=f(x) [mm]\in[/mm]f( f^(-1) (c))

>  Aus den letzten beiden Zeilen folgt y [mm] \in [/mm] f ( A [mm] \wedge [/mm] f^(-1) (C))

stimmt das so?

ist eigentlich [mm] \wedge [/mm] und [mm] \cap [/mm] das gleiche? das hab ich zumindest immer angenommen...??

danke
grüße


Bezug
                        
Bezug
Gleichungen Zeigen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Mo 29.10.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de