www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Gleichungen aus Bedingungen
Gleichungen aus Bedingungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen aus Bedingungen: Benötige Hilfe bei der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:21 Do 11.12.2008
Autor: Unfold

Aufgabe
Für die Funktion f mit f(x)=(ax²+b)e^(x) sind die Koeffizienten a, b so zu bestimmen, dass W (-1 / 2e - 1) Wendepunkt des Schaublides von f ist.
x, a, b entsprechen allen reelen Zahlen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Das Thema ist Aufstellen von Exponentialfunktionen durch gegebene Bedingungen.

Ich bin jetzt fats ne' Stunde an der Aufgabe hängen geblieben, aber so langsam wird aus meiner Motivation eher Frust.

Und zwar:
Für die Funktion f mit f(x)=(ax²+b)e^(x) sind die Koeffizienten a, b so zu bestimmen, dass W (-1 / 2e - 1) Wendepunkt des Schaublides von f ist.
x, a, b entsprechen allen reelen Zahlen

Meine Ableitungen:
f'(x)= 2axe^(x) + (ax²+b)e^(x)
f''(x)= 2ae(x) + 2axe^(x)+ 2axe^(x) + ax²e^(x) + be^(x)

Ansatz:

f(-1) = 2e-1
f''(-1) = 0

Ich komme dann insgesamt auf:

(I) 2e-1 = (a+b)e^(-1)
(II) 0 = -ae^(-1) + be^(-1)  (zusammengefasst Version)

Dann hab' ich Additionsverfahreb gemacht:

2e-1 = 2be^(-1)

Und nun weiß ich nicht mehr weiter.

Lösung sollte sein: f(x)=(x²+1)e^(x)

Danke im Voraus.


        
Bezug
Gleichungen aus Bedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Do 11.12.2008
Autor: MathePower

Hallo Unfold,

[willkommenmr]

> Für die Funktion f mit f(x)=(ax²+b)e^(x) sind die
> Koeffizienten a, b so zu bestimmen, dass W (-1 / 2e - 1)
> Wendepunkt des Schaublides von f ist.
>  x, a, b entsprechen allen reelen Zahlen
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Das Thema ist Aufstellen von Exponentialfunktionen durch
> gegebene Bedingungen.
>  
> Ich bin jetzt fats ne' Stunde an der Aufgabe hängen
> geblieben, aber so langsam wird aus meiner Motivation eher
> Frust.
>  
> Und zwar:
>  Für die Funktion f mit f(x)=(ax²+b)e^(x) sind die
> Koeffizienten a, b so zu bestimmen, dass W (-1 / 2e - 1)
> Wendepunkt des Schaublides von f ist.
>  x, a, b entsprechen allen reelen Zahlen
>  
> Meine Ableitungen:
>  f'(x)= 2axe^(x) + (ax²+b)e^(x)
>  f''(x)= 2ae(x) + 2axe^(x)+ 2axe^(x) + ax²e^(x) + be^(x)
>  
> Ansatz:
>  
> f(-1) = 2e-1
>  f''(-1) = 0
>  
> Ich komme dann insgesamt auf:
>  
> (I) 2e-1 = (a+b)e^(-1)
>  (II) 0 = -ae^(-1) + be^(-1)  (zusammengefasst Version)
>  
> Dann hab' ich Additionsverfahreb gemacht:
>  
> 2e-1 = 2be^(-1)
>  


Auf beiden Seiten  steht derselbe Faktor: [mm]2e^{-1}[/mm]

Daher kannst Du durch diesen Faktor dividieren.

Dann steht das Ergebnis für b schon da.


> Und nun weiß ich nicht mehr weiter.
>  
> Lösung sollte sein: f(x)=(x²+1)e^(x)
>  
> Danke im Voraus.
>  


Gruß
MathePower

Bezug
                
Bezug
Gleichungen aus Bedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 Do 11.12.2008
Autor: Unfold


> > 2e-1 = 2be^(-1)
>  >  
>
>
> Auf beiden Seiten  steht derselbe Faktor: [mm]2e^{-1}[/mm]
>  
> Daher kannst Du durch diesen Faktor dividieren.
>  
> Dann steht das Ergebnis für b schon da.
>  
>
> > Und nun weiß ich nicht mehr weiter.
>  >  
> > Lösung sollte sein: f(x)=(x²+1)e^(x)
>  >  
> > Danke im Voraus.
> >  

>
>
> Gruß
>  MathePower

aber es steht doch  auf der linken seite 2e - 1 dort und nicht 2e^(-1), darf ich da wirklich teilen oO

Bezug
                        
Bezug
Gleichungen aus Bedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Do 11.12.2008
Autor: Herby

Hi,

> > > 2e-1 = 2be^(-1)
>  >  >  
> >
> >
> > Auf beiden Seiten  steht derselbe Faktor: [mm]2e^{-1}[/mm]
>  >  
> > Daher kannst Du durch diesen Faktor dividieren.
>  >  
> > Dann steht das Ergebnis für b schon da.
>  >  
> >
> > > Und nun weiß ich nicht mehr weiter.
>  >  >  
> > > Lösung sollte sein: f(x)=(x²+1)e^(x)
>  >  >  
> > > Danke im Voraus.
> > >  

> >
> >
> > Gruß
>  >  MathePower
>
> aber es steht doch  auf der linken seite 2e - 1 dort und
> nicht 2e^(-1), darf ich da wirklich teilen oO

warum steht da 2e-1?  Wir hatten es als [mm] 2e^{-1} [/mm] interpretiert.

Wie lautete dein ursprüngliches Gleichungssystem?


Lg
Herby

Bezug
                        
Bezug
Gleichungen aus Bedingungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Do 11.12.2008
Autor: Herby

Hallo,

das heißt mit Sicherheit [mm] 2e^{-1} [/mm] :-)


Lg
Herby

Bezug
                                
Bezug
Gleichungen aus Bedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:02 Fr 12.12.2008
Autor: Unfold

Leider nicht, weil der Punkt heißt ja W (-1 / 2e - 1).
Genau das ist ja das doofe an der Aufgabe :/

Bezug
                                        
Bezug
Gleichungen aus Bedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Fr 12.12.2008
Autor: Herby

Hallo,

> Leider nicht, weil der Punkt heißt ja W (-1 / 2e - 1).
>  Genau das ist ja das doofe an der Aufgabe :/

ich behaupte: nein!

Es gibt zwei Gründe, die für meine Behauptung sprechen.

1) Wenn [mm] f(x)=(x^2+1)*e^{-x} [/mm] eine Lösung sein soll, dann wäre durch den Wendepunkt W an der Stelle [mm] x_w=-1 [/mm] der Funktionswert [mm] y_w=2e-1=\red{4},437 [/mm]

[mm] f(\blue{-1})=((\blue{-1})^2+1)*e^{-(\blue{-1})}=(1+1)*e^1=\red{5},437 [/mm]

2) Ein Bild sagt mehr als 1000 Worte. Dein Punkt W liegt bei [mm] x_w=-1 [/mm] gar nicht auf dem Graphen:

[Dateianhang nicht öffentlich]


Dein Wendepunkt lautet [mm] W=(-1|2e^{-1}) [/mm] das kannst du an der orangefarbenen Linie erkennen und nachrechnen.


Liebe Grüße
Herby

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Gleichungen aus Bedingungen: kl. Ergänzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 Do 11.12.2008
Autor: Herby

Hallo,

> Für die Funktion f mit f(x)=(ax²+b)e^(x) sind die
> Koeffizienten a, b so zu bestimmen, dass W (-1 / 2e - 1)
> Wendepunkt des Schaublides von f ist.
>  x, a, b entsprechen allen reelen Zahlen
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Das Thema ist Aufstellen von Exponentialfunktionen durch
> gegebene Bedingungen.
>  
> Ich bin jetzt fats ne' Stunde an der Aufgabe hängen
> geblieben, aber so langsam wird aus meiner Motivation eher
> Frust.
>  
> Und zwar:
>  Für die Funktion f mit f(x)=(ax²+b)e^(x) sind die
> Koeffizienten a, b so zu bestimmen, dass W (-1 / 2e - 1)
> Wendepunkt des Schaublides von f ist.
>  x, a, b entsprechen allen reelen Zahlen
>  
> Meine Ableitungen:
>  f'(x)= 2axe^(x) + (ax²+b)e^(x)

hier solltest du [mm] e^x [/mm] ausklammern, dann ist [mm] f'(x)=e^x*(ax^2+2ax+b) [/mm]

Auf solchen einen Term kann man anschließend besser die Produktregel anwenden.

>  f''(x)= 2ae(x) + 2axe^(x)+ 2axe^(x) + ax²e^(x) + be^(x)

das gleiche hier: [mm] f''(x)=e^{x}*(ax^2+2ax+2a+b) [/mm]



Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de