www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Gleichungen lösen
Gleichungen lösen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen lösen: allgemeine Lösung gesucht
Status: (Frage) beantwortet Status 
Datum: 18:17 So 08.01.2006
Autor: LarsB

Aufgabe
Folgende Gleichung ist zu lösen: (allgemeine Lösung angeben)

[mm]cos{(2x)}=3+6 \bruch{2}{3}cos{x}[/mm]

Kann mir bitte jemand diese Gleichung lösen?
Bitte mit Zwischenschritten.

        
Bezug
Gleichungen lösen: Umformen in algebraische Gl.
Status: (Antwort) fertig Status 
Datum: 19:41 So 08.01.2006
Autor: Infinit

Hallo LarsB,
der Trick bei all diesen Gleichungen ist es, die trigonometrische Gleichung in eine algebraische umzuformen. Hierzu braucht man eine gewisse Erfahrung und/oder eine gute Formelsammlung. In Deinem Beispiel wird aufgrund des doppelten Winkelargumentes eine quadratische Gleichung sich ergeben. Was wir brauchen zur Umformung ist,
$$ [mm] \cos^2 [/mm] x + [mm] \sin^2 [/mm] x = 1 $$ und
$$ [mm] \cos [/mm] (2x) = [mm] \cos^2 [/mm] x - [mm] \sin^2 [/mm] x $$
Mit diesen beiden Gleichungen ergibt sich für die linke Seite Deiner Gleichung der Ausdruck $ [mm] 2\cos^2 [/mm] x - 1$ und damit für die gesamte Gleichung
$$ 2 [mm] \cos^2 [/mm] x - 1 = 3 + 4 [mm] \cos [/mm] x $$
Daraus ergibt sich durch einfaches Umformen und nach Division durch 2
$$ [mm] \cos^2 [/mm] x - 2 [mm] \cos [/mm] x - 2 = 0$$
Substituiert man nun $ [mm] \cos [/mm] x = m $ erhält man die quadratische Gleichung
$$ [mm] m^2 [/mm] - 2m -2 =0$$
die man über die p/q-Formel lösen kann:
[mm] $$m_{1,2} [/mm] = 1 [mm] \pm \wurzel{3} [/mm] $$

Es gibt also zwei Hauptwerte für Deine Gleichung mit
$$ [mm] x_{1,2}= \arccos (1\pm \wurzel{3}) [/mm] $$ und natürlich alle Werte für x, die sich um ganzzahlige Vielfache von  [mm] \pi [/mm]  davon unterscheiden.
Ich gebe zu, man braucht ein gewisses Gespür zum Ändern der Gleichungen, aber hier hilft nur üben, üben, üben.
Viele Grüße,
Infinit

Bezug
                
Bezug
Gleichungen lösen: nicht ganz nachvollziehbar
Status: (Frage) beantwortet Status 
Datum: 15:26 Mo 09.01.2006
Autor: LarsB

Aufgabe
[mm]cos(2x)=3+6\bruch{2}{3}cosx[/mm]
NR:
[mm]cos(2x)=cos^{2}x-sin^{2}x[/mm] [mm] \Rightarrow [/mm]

[mm]cos^{2}x-sin^{2}x=3+6\bruch{2}{3}cosx[/mm]

Hallo Infinit

soweit kann ich es nachvollziehen, bitte um Erklärung der nächsten Schritte!
muss ich [mm]sin^{2}x[/mm] noch umformen zu [mm]\bruch{1}{2}(1-cos2x)[/mm]?
..und wie kommt die Beziehung [mm]sin^{2}x+cos^{2}x={1}[/mm] hier zum tragen?

Gruß

LarsB

Bezug
                        
Bezug
Gleichungen lösen: quadratische Gleichung
Status: (Antwort) fertig Status 
Datum: 15:33 Mo 09.01.2006
Autor: Roadrunner

Hallo Lars!


Wenn Du nun in Deiner Gleichung [mm] $\sin^2(x)$ [/mm] ersetzt durch

[mm] [center]$\sin^2(x) [/mm] \ = \ [mm] 1-\cos^2(x)$ [/mm] ,[/center]

kannst Du folgendermaßen substituieren: $z \ := \ [mm] \cos(x)$ [/mm] .


Damit hast du eine quadratische  Gleichung, die Du mit bekannten Mitteln (z.B MBp/q-Formel) lösen kannst.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Gleichungen lösen: Warum?
Status: (Frage) beantwortet Status 
Datum: 16:18 Mo 09.01.2006
Autor: LarsB

Aufgabe
[mm]sin^{2}x=\bruch{1}{2}(1-cos2x)[/mm]
warum:
[mm]sin^{2}x=1-cos^{2}x[/mm]

Hallo Roadrunner,
Wie kommst Du darauf?


Bezug
                                        
Bezug
Gleichungen lösen: trigonometrischer Pythagoras
Status: (Antwort) fertig Status 
Datum: 16:20 Mo 09.01.2006
Autor: Roadrunner

Hallo Lars!


Hier wurde der trigonometrische Pythagoras [mm] $\sin^2(x)+\cos^2(x) [/mm] \ = \ 1$ nach [mm] $\sin^2(x)$ [/mm] umgestellt:

[mm] $\sin^2(x) [/mm] \ = \ [mm] 1-\cos^2(x)$ [/mm]


Gruß vom
Roadrunner


Bezug
                                                
Bezug
Gleichungen lösen: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:33 Mo 09.01.2006
Autor: LarsB

Hallo Roadrunner!

langsam geht mir wohl ein Licht auf!

Gruß

LarsB

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de