www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Gleichungen zweier Ebenen
Gleichungen zweier Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen zweier Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 So 28.02.2010
Autor: myserabla

Aufgabe
Gegeben sind die Ebene H: 2 [mm] x_{1}- x_{2}+x_{3}-4=0 [/mm] und die Punkte A(-1/2/2) und B (3/-3/1).

a) Bestimmen Sie die Normalengleichung der Ebene E, die senkrecht zu H verläuft und die Punkte A und B enthält.

b) Geben Sie eine Gleichung der Geraden der Ebene G an, die die Gerade AB in A senkrecht schneidet.

a) Kann ich bei der Aufstellung der Geradengleichung bei dem zweiten Spannvektor einfach den Normalenvektor von Ebene H nehmen, sprich:

E: x= [mm] \pmat{ -1 & 2 & 2 \\ } [/mm] + [mm] \lambda \pmat{ 4 & -5 & -1} [/mm] + [mm] \mu \pmat{ 2 & -1 & 1} [/mm]  

b) Bei dieser Aufgabe habe ich keine Ahnung, wo ich wirklich beginnen soll und wäre für einen Tipp, wie ich am besten beginne dankbar.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Gleichungen zweier Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 So 28.02.2010
Autor: Cybrina

Hallo,

>  a) Kann ich bei der Aufstellung der Geradengleichung bei
> dem zweiten Spannvektor einfach den Normalenvektor von
> Ebene H nehmen, sprich:
>  
> E: x= [mm]\pmat{ -1 & 2 & 2 \\ }[/mm] + [mm]\lambda \pmat{ 4 & -5 & -1}[/mm]
> + [mm]\mu \pmat{ 2 & -1 & 1}[/mm]  

Ja, genau so geht das.

> b) Bei dieser Aufgabe habe ich keine Ahnung, wo ich
> wirklich beginnen soll und wäre für einen Tipp, wie ich
> am besten beginne dankbar.

Also [mm] \vec{AB} [/mm] ist doch praktisch der Normalenvektor der gesuchten Ebene. Damit hast du in
ax+by+cz=d
schonmal a,b,c.
Und d bekommst du, indem du dann noch einen Punkt der Ebene, (denn einen kennst du ja) einsetzt...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de