www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Gleichungssystem
Gleichungssystem < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem: Erklärung
Status: (Frage) beantwortet Status 
Datum: 13:46 Do 17.12.2015
Autor: JennMaus

Aufgabe
Betrachten Sie folgendes Gleichungssystem

F(x,y,z) = g(x) + f(y,z) = 0
G(x,y,z) = h(x,y) + [mm] z^2 [/mm] = 0

wobei g,f und h Funktionen sind. Für das gegebene Gleichungssystem existieren die Funktionen x und y in z, nämlich x(z) und y(z) wenn:

a) g`(x)2z > [mm] f_{z}(y,z)h_{x}(x,y) [/mm]
b) [mm] g`(x)h_{y}(x,y) [/mm] = [mm] f_{y}(y,z)h_{x}(x,y) [/mm]
c) [mm] g`(x)h_{x}(x,y) [/mm] > [mm] f_{z}(y,z)h_{y}(x,y) [/mm]
d) [mm] g`(x)h_{y}(x,y) [/mm] > [mm] f_{z}(y,z)h_{x}(x,y) [/mm]

Ich weiß, dass nur die Aussage d) richtig ist, ich verstehe aber leider nicht weshalb das so ist :(

Hat jemand eine Erklärung für diese Lösung?

Vielen Dank schon mal :)

        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Do 17.12.2015
Autor: fred97


> Betrachten Sie folgendes Gleichungssystem
>  
> F(x,y,z) = g(x) + f(y,z) = 0
>  G(x,y,z) = h(x,y) + [mm]z^2[/mm] = 0
>  
> wobei g,f und h Funktionen sind. Für das gegebene
> Gleichungssystem existieren die Funktionen x und y in z,
> nämlich x(z) und y(z) wenn:
>  
> a) g'(x)2z > [mm]f_{z}(y,z)h_{x}(x,y)[/mm]
>  b) [mm]g'(x)h_{y}(x,y)[/mm] = [mm]f_{y}(y,z)h_{x}(x,y)[/mm]
>  c) [mm]g'(x)h_{x}(x,y)[/mm] > [mm]f_{z}(y,z)h_{y}(x,y)[/mm]

>  d) [mm]g'(x)h_{y}(x,y)[/mm] > [mm]f_{z}(y,z)h_{x}(x,y)[/mm]

>  Ich weiß, dass nur die Aussage d) richtig ist, ich
> verstehe aber leider nicht weshalb das so ist :(
>  
> Hat jemand eine Erklärung für diese Lösung?

Nimm Dir den Satz über implizit def. Funktionen her und schau Dir die Voraussetzungen an !

FRED

>  
> Vielen Dank schon mal :)


Bezug
        
Bezug
Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Do 17.12.2015
Autor: JennMaus

Der Satz über implizit definierte Funktionen besagt doch, dass eine Funktion, dann nach einer Variablen aufzulösen ist, wenn deren partielle Ableitung ungleich Null ist.

Wenn ich nun weiß, dass es diese Ableitung gäbe, weiß ich dadurch doch aber nicht, dass sie auch größer als die andere Seite ist, oder?

Bezug
                
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Do 17.12.2015
Autor: fred97


> Der Satz über implizit definierte Funktionen besagt doch,
> dass eine Funktion, dann nach einer Variablen aufzulösen
> ist, wenn deren partielle Ableitung ungleich Null ist.

Du sollst aber nach 2 Variablen auflösen , nach x und nach y. Wie lauten dann die Voraussetzungen ?

FRED


>  
> Wenn ich nun weiß, dass es diese Ableitung gäbe, weiß
> ich dadurch doch aber nicht, dass sie auch größer als die
> andere Seite ist, oder?


Bezug
                        
Bezug
Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Do 17.12.2015
Autor: JennMaus

Geht es hierbei dann nicht um eine JakobiMatrix [mm] J_{x,y}, [/mm] deren Determinante ungleich 0 sein müsste?!

Vielleicht habe ich den Satz auch doch nicht so richtig verstanden :(

Bezug
                                
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Do 17.12.2015
Autor: fred97


> Geht es hierbei dann nicht um eine JakobiMatrix [mm]J_{x,y},[/mm]
> deren Determinante ungleich 0 sein müsste?!

Ja, um welche Matrix genau ?

FRED


>  
> Vielleicht habe ich den Satz auch doch nicht so richtig
> verstanden :(


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de