www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Gleichungssystem
Gleichungssystem < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Mi 15.06.2011
Autor: Fincayra

Aufgabe
Gleichungssystem:
8x - 3y - 2xz = 0
-3x - 2yz = 0
x² + y² = 1

Hi,

die eigentliche Aufgabe lautet zwar anders, aber das einzige Problem besteht darin dieses blöde Gleichungssystem zu lösen. z wird nicht benötigt, nur x und y ; )

Für x hab ich schonmal x = [mm]\bruch{3}{4}[/mm]y - [mm]\bruch{3}{8y}[/mm] weiß aber nicht, ob es richtig ist. Für y komm ich damit auf keinen grünen Zweig, es soll angeblich 1/2 rauskommen : /

Lieben Gruß
Fin

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Mi 15.06.2011
Autor: Diophant

Hallo,

ich weiß nicht genau, wie du vorgegangen bist. Ich würde die beiden ersten Gleichungen nach z auflösen und gleichsetzen. Dadurch bekommst du ein nichtlineares System für x und y, welches man sehr leicht auf eine biquadratische Gleichung für x reduzieren kann, der Rest ist dann einfach.

Gruß, Diophant

Bezug
                
Bezug
Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Mi 15.06.2011
Autor: Fincayra

Hi

Danke erstmal für die schnelle Antwort. Ich habe die ersten beiden Gleichungen nach z aufgelöst und gleichgesetzt. "Unterwegs" hab ich mal für x² = 1 - y² eingesetzt und bin damit auf die Glg für x gekommen. Für y hatte ich dann ein biquadratisches Gleichungssystem, aber die Ergebnisse waren "eklig" ^^

Gleichgesetzt hab ich das raus: 4 - [mm]\bruch{3y}{2x}[/mm] = [mm]\bruch{-3x}{2y}[/mm]
das mit 2xy multipliziert: 8xy - 3y² = -3x² => 8xy + 3x² = 3y²
und dann x² = y - 1 eingesetzt. So bin ich auf mein x gekommen ^^

Meine biquadratische Gleichung war dann [mm] y^4 [/mm] - [mm]\bruch{88}{25}[/mm]y² + [mm]\bruch{9}{100}[/mm]
Aber ich glaub spätestens hier ist es falsch ._.

Lieben Gruß
Fin

Bezug
                        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Mi 15.06.2011
Autor: MathePower

Hallo Fincayra,


[willkommenmr]


> Hi
>  
> Danke erstmal für die schnelle Antwort. Ich habe die
> ersten beiden Gleichungen nach z aufgelöst und
> gleichgesetzt. "Unterwegs" hab ich mal für x² = 1 - y²
> eingesetzt und bin damit auf die Glg für x gekommen. Für
> y hatte ich dann ein biquadratisches Gleichungssystem, aber
> die Ergebnisse waren "eklig" ^^
>  
> Gleichgesetzt hab ich das raus: 4 - [mm]\bruch{3y}{2x}[/mm] =
> [mm]\bruch{-3x}{2y}[/mm]
>  das mit 2xy multipliziert: 8xy - 3y² = -3x² => 8xy +

> 3x² = 3y²
>  und dann x² = y - 1 eingesetzt. So bin ich auf mein x
> gekommen ^^
>  
> Meine biquadratische Gleichung war dann [mm]y^4[/mm] -
> [mm]\bruch{88}{25}[/mm]y² + [mm]\bruch{9}{100}[/mm]
>  Aber ich glaub spätestens hier ist es falsch ._.


Ja, das ist falsch.

Poste Deine Rechenschritte bis dahin.


>  
> Lieben Gruß
>  Fin



Gruss
MathePower

Bezug
                                
Bezug
Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Mi 15.06.2011
Autor: Fincayra

Hi

Ist das was ich für x raushab denn noch richtig?

x = [mm]\bruch{3}{4}[/mm]y - [mm]\bruch{3}{8y}[/mm]

([mm]\bruch{3}{4}[/mm]y - [mm]\bruch{3}{8y}[/mm])² = 1 - y²

ausmultiplizieren: [mm]\bruch{9}{16}[/mm]y² - [mm]\bruch{18}{4}[/mm] + [mm]\bruch{9}{64y²}[/mm] = 1 - y²

1 - y² nach links gebracht und mit y² multipliziert: [mm]\bruch{25}{16}[/mm][mm] y^4 [/mm] - [mm]\bruch{11}{2}[/mm]y² + [mm]\bruch{9}{64}[/mm] = 0

und dann y² = k gesetzt, für die gute alte p-q-Formel...

Wär echt mal schön wenn jemand ne Lösung hat und die mir nennen würde. Wir haben heut schon zu 5. in der uni daran rumgebastelt und keiner hat das Ergebnis raus, was der Rechner sagt. Wir kommen uns echt veräppelt vor ^^

Bezug
                                        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Mi 15.06.2011
Autor: MathePower

Hallo Fincayra,

> Hi
>  
> Ist das was ich für x raushab denn noch richtig?
>  
> x = [mm]\bruch{3}{4}[/mm]y - [mm]\bruch{3}{8y}[/mm]


Wenn dieses x daraus resultiert, was Du im letzten Post
durch Gleichsetzen bekommen hast, dann ist das schon
falsch.
(Auflösen der beiden ersten Gleichungen nach z und gleichsetzen)


Es ergibt sich hier eine quadratische Gleichung,
die zwei Lösungen hat.
Die Lösungen haben die Form x=c*y.


>  
> ([mm]\bruch{3}{4}[/mm]y - [mm]\bruch{3}{8y}[/mm])² = 1 - y²
>  
> ausmultiplizieren: [mm]\bruch{9}{16}[/mm]y² - [mm]\bruch{18}{4}[/mm] +
> [mm]\bruch{9}{64y²}[/mm] = 1 - y²
>  
> 1 - y² nach links gebracht und mit y² multipliziert:
> [mm]\bruch{25}{16}[/mm][mm] y^4[/mm] - [mm]\bruch{11}{2}[/mm]y² + [mm]\bruch{9}{64}[/mm] = 0
>  
> und dann y² = k gesetzt, für die gute alte p-q-Formel...
>  
> Wär echt mal schön wenn jemand ne Lösung hat und die mir
> nennen würde. Wir haben heut schon zu 5. in der uni daran
> rumgebastelt und keiner hat das Ergebnis raus, was der
> Rechner sagt. Wir kommen uns echt veräppelt vor ^^


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de