www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Gleichungssystem Lösen
Gleichungssystem Lösen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem Lösen: Ist die Idee korrekt?
Status: (Frage) beantwortet Status 
Datum: 19:50 Mo 01.12.2008
Autor: carlosfritz

Aufgabe
Bestimme komplexe Zahlen z;w 2 C , die das Gleichungssystem
(2 + i) z - (-3 + i)w = 4 - 3i
(1 - 4i) z + (2 - 3i)w = 2 - 14i
lösen.

Meine Idee ist wie folgt:
Inverses zu (2+i) und (1-4i) bilden und die jeweilige Gleichung mit diesem multiplizieren. Danach Gleichung I minus Gleichung II.  Nun "w" freistellen.

Allerdings bekomme ich so komische Brüche, für eine gestellte Aufgabe finde ich das eher komisch und frage mich ob ich alles richtig gemacht habe?

Als inverses zu 2+i habe ich (4/5,-1/5)
Als inverses zu 1-4i habe ich (1/16,4/16)

Meine entstandene Gleichung ist [mm] (\bruch{53}{40} [/mm] - [mm] \bruch{137}{80}*i)*w [/mm] = [mm] \bruch{-41}{40} [/mm] + [mm] \bruch{-113}{40}*i [/mm]

wo ist mein Fehler?

        
Bezug
Gleichungssystem Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Mo 01.12.2008
Autor: schachuzipus

Hallo carlosfritz,

> Bestimme komplexe Zahlen z;w 2 C , die das
> Gleichungssystem
>  (2 + i) z - (¡3 + i)w = 4 - 3i
>  (1 - 4i) z + (2 - 3i)w = 2 - 14i
>  lösen.
>  Meine Idee ist wie folgt:
>  Inverses zu (2+i) und (1-4i) bilden und die jeweilige
> Gleichung mit diesem multiplizieren. Danach Gleichung I
> minus Gleichung II.  Nun "w" freistellen.
>  
> Allerdings bekomme ich so komische Brüche, für eine
> gestellte Aufgabe finde ich das eher komisch und frage mich
> ob ich alles richtig gemacht habe?
>  
> Als inverses zu 2+i habe ich (4/5,-1/5)
> Als inverses zu 1-4i habe ich (1/16,4/16)
>  
> Meine entstandene Gleichung ist [mm](\bruch{53}{40}[/mm] -
> [mm]\bruch{137}{80}*i)*w[/mm] = [mm]\bruch{-41}{40}[/mm] +
> [mm]\bruch{-113}{40}*i[/mm]
>  
> wo ist mein Fehler?


Die Frage ist, was in der ersten Gleichung steht?

[mm] $(2+i)z-(i^3+i)w=4-3i$ [/mm] ?

Dann bedenke, dass [mm] $i^3=-i$, [/mm] dann wird's doch ziemlich übersichtlich ...

Oder steht da [mm] $(2+i)z-(\red{3\cdot{}}i+i)w=4-3i$ [/mm] ?

Aber das erscheint mir auch relativ sinnentleert, denn dann würde man direkt 4i schreiben, oder?

Also bitte den Formeleditor nutzen ...


LG

schachuzipus



Bezug
                
Bezug
Gleichungssystem Lösen: ups...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:30 Mo 01.12.2008
Autor: carlosfritz

sorry, das habe ich wohl übersehen, da soll stehen (-3+i) ich editiere es sofort, danke

Bezug
        
Bezug
Gleichungssystem Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Mo 01.12.2008
Autor: schachuzipus

Hallo nochmal,

der Server spielt mal wieder verrückt, ich hatte 3mal "keine Verbindung" [kopfkratz3]

> Bestimme komplexe Zahlen z;w 2 C , die das
> Gleichungssystem
>  (2 + i) z - (-3 + i)w = 4 - 3i
>  (1 - 4i) z + (2 - 3i)w = 2 - 14i
>  lösen.
>  Meine Idee ist wie folgt:
>  Inverses zu (2+i) und (1-4i) bilden und die jeweilige
> Gleichung mit diesem multiplizieren. Danach Gleichung I
> minus Gleichung II.  Nun "w" freistellen.
>  
> Allerdings bekomme ich so komische Brüche, für eine
> gestellte Aufgabe finde ich das eher komisch und frage mich
> ob ich alles richtig gemacht habe?
>  
> Als inverses zu 2+i habe ich (4/5,-1/5)
> Als inverses zu 1-4i habe ich (1/16,4/16)
>  
> Meine entstandene Gleichung ist [mm](\bruch{53}{40}[/mm] -
> [mm]\bruch{137}{80}*i)*w[/mm] = [mm]\bruch{-41}{40}[/mm] +
> [mm]\bruch{-113}{40}*i[/mm]
>  
> wo ist mein Fehler?

Die Idee ist die richtige, ich erhalte aber für die Inversen jeweils etwas anderes:

zu $2+i$:

[mm] $z\cdot{}(2+i)=1\Rightarrow z=\frac{1}{2+i}=\frac{\blue{2i-1}}{(2+i)\blue{(2-i)}}=\frac{2-i}{5}=\frac{2}{5}-\frac{1}{5}i$ [/mm]

Also immer mit dem konjuguert Komplexen des Nenners erweitern...

Das Inverse zu $1-4i$ scheint mir auch nicht zu stimmen, rechne nochmal nach!

LG

schachuzipus

Bezug
                
Bezug
Gleichungssystem Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 Mo 01.12.2008
Autor: carlosfritz

Hmm, was habe ich da bloß gemacht?

aber mein inverses zu 1-4i schaut immer noch komisch aus. (1/17;4/17).

und für w erhalte ich nun [mm] \bruch{61}{17} [/mm] - [mm] \bruch{52}{51}*i [/mm] ich finde es immernoch komisch

Bezug
                        
Bezug
Gleichungssystem Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Mo 01.12.2008
Autor: schachuzipus

Hallo carlosfritz,

> Hmm, was habe ich da bloß gemacht?
>  
> aber mein inverses zu 1-4i schaut immer noch komisch aus.
> (1/17;4/17). [ok]

besser [mm] $\frac{1}{17}+\frac{4}{17}i$ [/mm]

>  
> und für w erhalte ich nun [mm]\bruch{61}{17}[/mm] - [mm]\bruch{52}{51}*i[/mm]
> ich finde es immernoch komisch

in der Tat, DERIVE sagt, dass die Lösung $z=2+i$ und $w=1-2i$ ist

Poste also mal deine Rechnung, dann sehen wir weiter, ich denke, es ist immerhin deine Übungsaufgabe, also solltest du dir die Mühe machen, das zu rechnen und auch einzutippeln, wenn du's korrigiert haben möchtest ...

;-)

cu

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de