www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Gleichungssystem Lösen
Gleichungssystem Lösen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem Lösen: Idee
Status: (Frage) beantwortet Status 
Datum: 08:50 Sa 26.01.2013
Autor: Mathe_Hannes

Aufgabe
Bestimme die Variablen T1 und T2:

[mm] T1\sin [/mm] 28 + T2 [mm] \sin [/mm] 47 = 147       (1)

[mm] -T1\cos [/mm] 28 + T2 [mm] \cos [/mm] 47 = 0         (2)

Hi,

dieses Gleichungssystem sieht denkbar einfach aus aber irgendwie habe ich so meine Schwierigkeiten es zu lösen.

Habe versucht die Gleichung (2) nach T1 aufzulösen und das Ergebnis dann in (1) für den Ausdruck T1 einzusetzen.

Dann steht da:

(T2 [mm] \cos [/mm] 47 / cos 28 ) + T2 [mm] \sin [/mm] 47 = 147


Nun stecke ich aber fest und weiß nicht wie ich mit den ganzen Winkeln weiter rechnen soll, helft mir mal bitte auf die Sprünge.



Vielen Dank schonmal im vorraus,

Gruß Hannes

        
Bezug
Gleichungssystem Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:13 Sa 26.01.2013
Autor: Richie1401

Hallo Hannes,

zunächst: Das GLS sieht vermutlich ordentlich aufgeschrieben wie folgt aus:

[mm] \vmat{ T_1\sin(28)+T_2\sin(47)=147 \\ -T_1\cos(28)+T_2\cos(47)=0 } [/mm]

>  
> (T2 [mm]\cos[/mm] 47 / cos 28 ) + T2 [mm]\sin[/mm] 47 = 147

Du hast nun
[mm] T_2\frac{\cos(47}{\cos(28)}+T_2\sin(47)=147 [/mm]
[mm] !!!!\red{\text{Dies ist falsch! Bitte Edit unten beachten}}!!!! [/mm]

Klammer doch [mm] T_2 [/mm] aus und dividiere dann durch den entsprechnenden anderen Faktor. Ein vorheriges beiderseitiges Multiplizieren mit [mm] \cos(28) [/mm] verhindert übrigens einen hässlichen Doppelbruch. Da wird das alles ein bisschen "schöner".

>  
>
> Nun stecke ich aber fest und weiß nicht wie ich mit den
> ganzen Winkeln weiter rechnen soll, helft mir mal bitte auf
> die Sprünge.
>  
>
>
> Vielen Dank schonmal im vorraus,
>  
> Gruß Hannes

EDIT: Mir ist oben ein Fehler unterlaufen. Ich bitte um Entschuldigung!
Wir setzen ja [mm] T_1 [/mm] in die erste Gleichung ein. Damit bleibt natürlich [mm] \sin(28) [/mm] noch dort stehen.

Richtig ist also:
[mm] T_2\frac{\cos(47)\sin(28)}{\cos(28)}+T_2\sin(47)=147 [/mm]

Bezug
                
Bezug
Gleichungssystem Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:33 Sa 26.01.2013
Autor: Mathe_Hannes

Vielen Dank für die schnelle Antwort:

Gute Idee, ich habe das gleich mal versucht wie du gesagt hast und komme dann auf golgendes Ergebnis.

Mit [mm] \cos [/mm] 28 multiplizieren und T2 ausklammern liefert:


T2 [mm] (\cos47 [/mm] + [mm] \sin47 \cos28) [/mm] = 147 [mm] \cos [/mm] 28


Durch die Klammer dividieren liefert:


T2 = 147 / ( [mm] \cos47 [/mm] + [mm] \sin47 [/mm] )


Mein Ergebnis ist aber leider falsch , da ich für : T2= 104 und für T1 = 134 erhalte...


Das Ergebnis is der Kurzlösung lautet aber : T1= 104 und T2= 134


hmm irgendwie komisch...weiß wer wo der fehler liegt?




Bezug
                        
Bezug
Gleichungssystem Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Sa 26.01.2013
Autor: Richie1401

Moin moin,

> Vielen Dank für die schnelle Antwort:
>  
> Gute Idee, ich habe das gleich mal versucht wie du gesagt
> hast und komme dann auf golgendes Ergebnis.
>  
> Mit [mm]\cos[/mm] 28 multiplizieren und T2 ausklammern liefert:
>  
>
> T2 [mm](\cos47[/mm] + [mm]\sin47 \cos28)[/mm] = 147 [mm]\cos[/mm] 28
>  
>
> Durch die Klammer dividieren liefert:
>  
>
> T2 = 147 / ( [mm]\cos47[/mm] + [mm]\sin47[/mm] )

Wo ist [mm] \cos(28) [/mm] im Zähler geblieben? Und im Nenner fehlt doch auch noch was!

>  
>
> Mein Ergebnis ist aber leider falsch , da ich für : T2=
> 104 und für T1 = 134 erhalte...
>  
>
> Das Ergebnis is der Kurzlösung lautet aber : T1= 104 und
> T2= 134
>  
>
> hmm irgendwie komisch...weiß wer wo der fehler liegt?

Mal nebenbei gefragt: Wird hier in Grad oder Radian gerechnet?

>  
>
>  


Bezug
                                
Bezug
Gleichungssystem Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:59 Sa 26.01.2013
Autor: Mathe_Hannes

Das bezieht sich alles auf Grad.

hmm kürt sich das nicht alles raus? So wie ichs da geschrieben hatte?

147 [mm] *\cos [/mm] 28 / [mm] ((\cos47 [/mm] + [mm] (\sin47 [/mm] / [mm] \cos28 [/mm] ))

ist doch das selbe wie das hier oder nicht?(nur halt gekürzt)

147 / ( $ [mm] \cos47 [/mm] $ + $ [mm] \sin47 [/mm] $ )



mfg

Bezug
                                        
Bezug
Gleichungssystem Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Sa 26.01.2013
Autor: Richie1401

Nein, da kürzt sich nix heraus. "Aus Differenzen und Summen kürzen nur die Dummen" - so heißt es zumindest.

Es ergibt sich doch nach Multiplikation mit [mm] \cos(28) [/mm] folgendes:

[mm] T_2(\cos(47)\sin(28)+\sin(47)\cos(28))=147\cos(28) [/mm]

Nach Division:

[mm] T_2=\frac{147\cos(28)}{\cos(47)\sin(28)+\sin(47)\cos(28)} [/mm]

Was soll sich denn da bitteschön kürzen?
So, die Lösung steht nun oben schon da. Also in den TR reinhacken und sich über das richtige Ergebnis freuen, dann nur noch [mm] T_2 [/mm] in die erste umgestellte Gleichung einsetzen, um [mm] T_1 [/mm] zu erhalten.

Bezug
                        
Bezug
Gleichungssystem Lösen: Fehler unterlaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:59 Sa 26.01.2013
Autor: Richie1401

Mir ist oben ein Fehler unterlaufen, bitte schau dir meine erste Antwort noch einmal an.

Bezug
                                
Bezug
Gleichungssystem Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:04 Sa 26.01.2013
Autor: Mathe_Hannes

Ahja, naja ist noch früh- war außerdem mein fehler :=)


Ich bin jetzt total verwirrt, kannst du vielleicht den rechenschritt mal hinschreiben wie das aussehen muss wenn ich jetzt :

(2) nach T1 auflösen und das Ergebnis dann in (1) für den Ausdruck T1 einsetzen


Danach dann mit cos 28 multiplizieren und T2 ausklammern


Dann alles rüber auf die rechte seite so das dann da steht :

T2 = ..irgendwas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de