Gleichungssystem ganz komisch < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:32 Di 08.06.2004 | Autor: | nevinpol |
Hi
also hier ist eine aufgabe mit der ich überhaupt nicht klar komme.
Ich habe soviele Ansatzversuche gestartet und alle haben irgendwie
keinen Sinn gehabt. Also werde ich ausnahmsweise mal nur die Aufgabe
ohne meinen Ansatz und Gedanken aufschreiben und hoffe auf eure Anregungen...
Finden Sie Zahlen [mm] $a_{ij} \in \IR$ [/mm] für $1 [mm] \le [/mm] i,j [mm] \le [/mm] 3$ und
[mm] $b_i \in \IR$ [/mm] für $1 [mm] \le [/mm] i [mm] \le [/mm] 3$, so dass für alle $k,l [mm] \in \{1,2,3\}$
[/mm]
das Gleichungssystem
[mm] $a_{k1}x_1 [/mm] + [mm] a_{k2}x_2 [/mm] + [mm] a_{k3}x_3 [/mm] = [mm] b_k$
[/mm]
[mm] $a_{l1}x_1 [/mm] + [mm] a_{l2}x_2 [/mm] + [mm] a_{l3}x_3 [/mm] = [mm] b_l$
[/mm]
lösbar ist, nicht aber das Gleichungssystem
[mm] $a_{11}x_1 [/mm] + [mm] a_{12}x_2 [/mm] + [mm] a_{13}x_3 [/mm] = [mm] b_1$
[/mm]
[mm] $a_{21}x_1 [/mm] + [mm] a_{22}x_2 [/mm] + [mm] a_{23}x_3 [/mm] = [mm] b_2$
[/mm]
[mm] $a_{31}x_1 [/mm] + [mm] a_{32}x_2 [/mm] + [mm] a_{33}x_3 [/mm] = [mm] b_3$
[/mm]
Meint ihr ich könnte auch durch einsetzen und ausprobieren (so etwa 100 mal )
irgendwelche Zahlen für $i$ und [mm] $b_1$ [/mm] finden und dann sagen für die gilt es ohne
dabei ein richtiges Lösungssystem anzugeben???
Das Wetter ist heute aber auch zu schön um LA zu machen :(
Vielen Dank
nevinpol
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:09 Di 08.06.2004 | Autor: | Marc |
Hallo nevinpol,
> Finden Sie Zahlen [mm] $a_{ij} \in \IR$ [/mm] für $1 [mm] \le [/mm] i,j [mm] \le [/mm] 3$
> und
> [mm] $b_i \in \IR$ [/mm] für $1 [mm] \le [/mm] i [mm] \le [/mm] 3$, so dass für alle $k,l
> [mm] \in \{1,2,3\}$
[/mm]
> das Gleichungssystem
>
> [mm] $a_{k1}x_1 [/mm] + [mm] a_{k2}x_2 [/mm] + [mm] a_{k3}x_3 [/mm] = [mm] b_k$
[/mm]
> [mm] $a_{l1}x_1 [/mm] + [mm] a_{l2}x_2 [/mm] + [mm] a_{l3}x_3 [/mm] = [mm] b_l$
[/mm]
>
> lösbar ist, nicht aber das Gleichungssystem
>
> [mm] $a_{11}x_1 [/mm] + [mm] a_{12}x_2 [/mm] + [mm] a_{13}x_3 [/mm] = [mm] b_1$
[/mm]
> [mm] $a_{21}x_1 [/mm] + [mm] a_{22}x_2 [/mm] + [mm] a_{23}x_3 [/mm] = [mm] b_2$
[/mm]
> [mm] $a_{31}x_1 [/mm] + [mm] a_{32}x_2 [/mm] + [mm] a_{33}x_3 [/mm] = [mm] b_3$
[/mm]
>
>
> Meint ihr ich könnte auch durch einsetzen und ausprobieren
> (so etwa 100 mal )
> irgendwelche Zahlen für $i$ und [mm] $b_1$ [/mm] finden und dann
> sagen für die gilt es ohne
> dabei ein richtiges Lösungssystem anzugeben???
Ja, klar, es würde so gehen. Du selbst bist ja aber skeptisch, dass du auf diese Weise sicher geeignete Zahlen finden kannst.
Wahrscheinlich gibt es mehrere Herangehensweisen, ich will hier mal eine geometrische anregen:
Die erste Bedingung ergibt ja neun Gleichungssysteme
1.
[mm] $a_{11}x_1 [/mm] + [mm] a_{12}x_2 [/mm] + [mm] a_{13}x_3 [/mm] = [mm] b_1$
[/mm]
[mm] $a_{11}x_1 [/mm] + [mm] a_{12}x_2 [/mm] + [mm] a_{13}x_3 [/mm] = [mm] b_1$
[/mm]
2.
[mm] $a_{11}x_1 [/mm] + [mm] a_{12}x_2 [/mm] + [mm] a_{13}x_3 [/mm] = [mm] b_1$
[/mm]
[mm] $a_{21}x_1 [/mm] + [mm] a_{22}x_2 [/mm] + [mm] a_{23}x_3 [/mm] = [mm] b_2$
[/mm]
3.
[mm] $a_{11}x_1 [/mm] + [mm] a_{12}x_2 [/mm] + [mm] a_{13}x_3 [/mm] = [mm] b_1$
[/mm]
[mm] $a_{31}x_1 [/mm] + [mm] a_{32}x_2 [/mm] + [mm] a_{33}x_3 [/mm] = [mm] b_3$
[/mm]
[mm] \vdots
[/mm]
9.
[mm] $a_{31}x_1 [/mm] + [mm] a_{32}x_2 [/mm] + [mm] a_{33}x_3 [/mm] = [mm] b_3$
[/mm]
[mm] $a_{31}x_1 [/mm] + [mm] a_{32}x_2 [/mm] + [mm] a_{33}x_3 [/mm] = [mm] b_3$
[/mm]
Nun das Entscheidende: Jede dieser Gleichungen beschreibt ja eine Ebene im [mm] $\IR^3$, [/mm] denn jeder Gleichung ist ja die sogenannte Koordinatenform der Ebene, die man bereits aus der Schule kennt.
Gesucht sind also nur drei Ebenen, die sich auf durch die Gleichungen definierte Art und Weise untereinander schneiden.
Formuliere die Gleichungssysteme mal in Sätze um wie, [mm] "$E_1$ [/mm] soll [mm] $E_2$ [/mm] schneiden/nicht schneiden" etc. dann wirst du schnell sehen, wie man drei Ebenen "legen" muss, damit sie das geforderte "Schnittmuster" haben.
Viel Spaß beim Knobeln ,
Marc
|
|
|
|