www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Gleichungssystem lösen
Gleichungssystem lösen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Mo 17.11.2008
Autor: Rowddy

Aufgabe
[mm] x_{2} [/mm] + [mm] 2x_{3} [/mm] + [mm] x_{4} [/mm] + [mm] 3x_{5} [/mm] = 0
[mm] 2x_{2} [/mm] + [mm] 4x_{3} [/mm] + [mm] 2_{4} x_{6} [/mm] = 0
[mm] x_{1} [/mm] + [mm] x_{2} [/mm] + [mm] 2x_{3} [/mm] + [mm] x_{4} [/mm] + [mm] 9x_{5} [/mm] = 0
[mm] x_{1} [/mm] - [mm] 2x_{5} [/mm] + [mm] 2x_{6} [/mm] = 0
[mm] x_{1} [/mm] - [mm] 2x_{2} [/mm] - [mm] 4x_{3} [/mm] - [mm] 2x_{4} [/mm] + [mm] 4x_{5} x_{6} [/mm] = 0

Hallo! :)

Also, mit diesem Gleichungssystem hab ich so meine Probleme.

Nachdem ich alles umgeformt habe, kommt bei mir für zwei der Gleichungen etwa sowas heraus:

[mm] x_{6}=\bruch{13}{7} [/mm]  und
[mm] -\bruch{2}{13}x_{6}=-\bruch{1}{7} [/mm]

Was dann ja eindeutig ein Widerspruch ist. Ich bin ob dieser Lösung aber etwas skeptisch, obwohl ich alle Umformungen 2mal nachgerechnet habe.... Ist das Gleichungssystem wirklich unlösbar?

Danke für die Hilfe! :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichungssystem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Mo 17.11.2008
Autor: schachuzipus

Hallo Rowddy und herzlich [willkommenmr],

> [mm]x_{2}[/mm] + [mm]2x_{3}[/mm] + [mm]x_{4}[/mm] + [mm]3x_{5}[/mm] = 0
>  [mm]2x_{2}[/mm] + [mm]4x_{3}[/mm] + [mm]2_{4} x_{6}[/mm] = 0
>  [mm]x_{1}[/mm] + [mm]x_{2}[/mm] + [mm]2x_{3}[/mm] + [mm]x_{4}[/mm] + [mm]9x_{5}[/mm] = 0
>  [mm]x_{1}[/mm] - [mm]2x_{5}[/mm] + [mm]2x_{6}[/mm] = 0
>  [mm]x_{1}[/mm] - [mm]2x_{2}[/mm] - [mm]4x_{3}[/mm] - [mm]2x_{4}[/mm] + [mm]4x_{5} x_{6}[/mm] = 0
>  
> Hallo! :)
>  
> Also, mit diesem Gleichungssystem hab ich so meine
> Probleme.
>
> Nachdem ich alles umgeformt habe, kommt bei mir für zwei
> der Gleichungen etwa sowas heraus:
>  
> [mm]x_{6}=\bruch{13}{7}[/mm]  und
>  [mm]-\bruch{2}{13}x_{6}=-\bruch{1}{7}[/mm]
>  
> Was dann ja eindeutig ein Widerspruch ist. Ich bin ob
> dieser Lösung aber etwas skeptisch, obwohl ich alle
> Umformungen 2mal nachgerechnet habe.... Ist das
> Gleichungssystem wirklich unlösbar?

Ohne etwas nachgerechnet zu haben, was auch schwierig ist, denn es ist unklar, was genau in der 2.Gleichung steht, kann man direkt sagen, dass das LGS auf jeden Fall lösbar ist.

Du hast nämlich hier ein homogenes LGS vorliegen, die rechte Seite ist =0 (Nullvektor)

Das hat immer [mm] $\vec{x}=\vektor{x_1\\x_2\\x_3\\x_4\\x_5\\x_6}=\vektor{0\\0\\0\\0\\0\\0}$ [/mm] als Lösung

Wenn es eindeutig lösbar ist, ist die eind. Lösung eben genau dieser Nullvektor, wenn es nicht eindeutig ist, gibt es halt unendlich viele Lösungen.

Dein Widerspruch muss also in einem Rechen- oder Umformungsfehler begründet sein ...


>  
> Danke für die Hilfe! :)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Gleichungssystem lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Mo 17.11.2008
Autor: Rowddy

Mist! Da hab ich die rechte Seite als Nullvektor stehen... ist sie aber nicht. Sorry, tut mir leid... die richtige Gleichung sieht so aus:

Aufgabe
[mm] x_{2} [/mm] + [mm] 2x_{3} [/mm] + [mm] x_{4} [/mm] + [mm] 3x_{5} [/mm] = 0
[mm] 2x_{2} [/mm] + [mm] 4x_{3} [/mm] + [mm] 2x_{4} [/mm] + [mm] x_{6} [/mm] = 1
[mm] x_{1} [/mm] + [mm] x_{2} [/mm] + [mm] 2x_{3} [/mm] + [mm] x_{4} [/mm] + [mm] 9x_{5} [/mm] = 1
[mm] x_{1} [/mm] - [mm] 2x_{5} [/mm] + [mm] 2x_{6} [/mm] = 0
[mm] x_{1} [/mm] - [mm] 2x_{2} [/mm] - [mm] 4x_{3} [/mm] - [mm] 2x_{4} [/mm] + [mm] 4x_{5} [/mm] + [mm] x_{6} [/mm] = 0


Entschuldige nochmal. :/

Bezug
                        
Bezug
Gleichungssystem lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Mo 17.11.2008
Autor: schachuzipus

Hallo nochmal,

kurze Rückfrage:

Wie sieht das in der letzten Gleichung am Ende aus? [mm] +,-,\cdot{} [/mm] ?

LG

schachuzipus

Bezug
                                
Bezug
Gleichungssystem lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Mo 17.11.2008
Autor: Rowddy

Ist ein +. Habs jetzt auch ausgebessert. :)

Bezug
                        
Bezug
Gleichungssystem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Mo 17.11.2008
Autor: MathePower

Hallo Rowddy,

> Mist! Da hab ich die rechte Seite als Nullvektor stehen...
> ist sie aber nicht. Sorry, tut mir leid... die richtige
> Gleichung sieht so aus:
>  
> [mm]x_{2}[/mm] + [mm]2x_{3}[/mm] + [mm]x_{4}[/mm] + [mm]3x_{5}[/mm] = 0
>  [mm]2x_{2}[/mm] + [mm]4x_{3}[/mm] + [mm]2x_{4}[/mm] + [mm]x_{6}[/mm] = 1
>  [mm]x_{1}[/mm] + [mm]x_{2}[/mm] + [mm]2x_{3}[/mm] + [mm]x_{4}[/mm] + [mm]9x_{5}[/mm] = 1
>  [mm]x_{1}[/mm] - [mm]2x_{5}[/mm] + [mm]2x_{6}[/mm] = 0
>  [mm]x_{1}[/mm] - [mm]2x_{2}[/mm] - [mm]4x_{3}[/mm] - [mm]2x_{4}[/mm] + [mm]4x_{5}[/mm] + [mm]x_{6}[/mm] = 0
>  


Dieses Gleichungssystem  ist in der Tat unlösbar.


>
> Entschuldige nochmal. :/


Gruß
MathePower

Bezug
                                
Bezug
Gleichungssystem lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Mo 17.11.2008
Autor: Rowddy

Vielen Dank für die Hilfe! ^_^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de