Gleichungssystem mit Cos u Sin < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:50 So 29.12.2013 | Autor: | flexbex |
Aufgabe | Ich möchte drei Unbekannte aus einem Gleichungssystem mit Sinus und Cosinus Funktionen lösen.
Die Gleichungen lauten
[mm] U1=cos(\alpha)*(x1-Tx)-sin(\alpha)*(y1-Ty)-x1
[/mm]
[mm] U2=cos(\alpha)*(x2-Tx)-sin(\alpha)*(y2-Ty)-x2
[/mm]
[mm] V1=sin(\alpha)*(x1+Tx)+cos(\alpha)*(y1+Ty)-y1
[/mm]
gegeben: U1,U2,V1,x1,x2,y1,y2
gesucht [mm] Tx,Ty,\alpha
[/mm]
[mm] \alpha [/mm] ist zwischen -pi/2 : +pi/2 |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ja also die Aufgabe steht ja schon da. Als Ansatz hätte ich jetzt sin(a) in [mm] \wurzel{1-cos(a)^{2}} [/mm] gewandelt um so nur noch Cosinus in der Funktion zu haben. mein Problem ist aber sobald ich die Wurzel drin habe und diese Auflösen möchte wird die Gleichung gleich sehr lang. Gibt es dafür vielleicht einen besseren weg.
|
|
|
|
Hallo flexbex,
> Ich möchte drei Unbekannte aus einem Gleichungssystem mit
> Sinus und Cosinus Funktionen lösen.
> Die Gleichungen lauten
> [mm]U1=cos(\alpha)*(x1-Tx)-sin(\alpha)*(y1-Ty)-x1[/mm]
> [mm]U2=cos(\alpha)*(x2-Tx)-sin(\alpha)*(y2-Ty)-x2[/mm]
> [mm]V1=sin(\alpha)*(x1+Tx)+cos(\alpha)*(y1+Ty)-y1[/mm]
> gegeben: U1,U2,V1,x1,x2,y1,y2
> gesucht [mm]Tx,Ty,\alpha[/mm]
> [mm]\alpha[/mm] ist zwischen -pi/2 : +pi/2
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Ja also die Aufgabe steht ja schon da. Als Ansatz hätte
> ich jetzt sin(a) in [mm]\wurzel{1-cos(a)^{2}}[/mm] gewandelt um so
> nur noch Cosinus in der Funktion zu haben. mein Problem ist
> aber sobald ich die Wurzel drin habe und diese Auflösen
> möchte wird die Gleichung gleich sehr lang. Gibt es dafür
> vielleicht einen besseren weg.
Löse 2 der 3 Gleichungen nach [mm]Tx, \ Ty[/mm] auf.
Und setze diese in die verbleibende Gleichung ein,
dann erhältst Du eine trigonometrische Gleichung in [mm]\alpha[/mm],
welche Du zunächst in eine geeigenete Form bringst.
Schliesslich bestimmst Du dann mit Hilfe eines
Koeffizientenvergleiches die benötigten Unbekannten.
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 18:39 So 29.12.2013 | Autor: | flexbex |
Hallo dankeschön dafür schonmal
Ich habe jetzt rausgefunden das wenn ich die Gleichung U1 nach Tx umstelle und in U2 einsetze habe ich nur noch cos und sin kann ich dann dort einen Koeffizienten vergleich machen
$ [mm] U1=cos(\alpha)\cdot{}(x1-Tx)-sin(\alpha)\cdot{}(y1-Ty)-x1 [/mm] $
nach Tx umstellen
$Tx=-(U1 + x1 - [mm] Ty*sin(\alpha) [/mm] - [mm] x1*cos(\alpha) [/mm] + [mm] y1*sin(\alpha))/cos(\alpha)$ [/mm]
in U2 einsetzen
$U2=U1 + x1 - x2 - [mm] x1*cos(\alpha) [/mm] + [mm] x2*cos(\alpha) [/mm] + [mm] y1*sin(\alpha) [/mm] - [mm] y2n*sin(\alpha)$
[/mm]
$U2= (x2- [mm] x1)*cos(\alpha)+ (y1-y2)*sin(\alpha) [/mm] +U1 + x1 - x2$
|
|
|
|
|
Hallo flexbex,
> Hallo dankeschön dafür schonmal
> Ich habe jetzt rausgefunden das wenn ich die Gleichung U1
> nach Tx umstelle und in U2 einsetze habe ich nur noch cos
> und sin kann ich dann dort einen Koeffizienten vergleich
> machen
>
> [mm]U1=cos(\alpha)\cdot{}(x1-Tx)-sin(\alpha)\cdot{}(y1-Ty)-x1[/mm]
> nach Tx umstellen
> [mm]Tx=-(U1 + x1 - Ty*sin(\alpha) - x1*cos(\alpha) + y1*sin(\alpha))/cos(\alpha)[/mm]
> in U2 einsetzen
> [mm]U2=U1 + x1 - x2 - x1*cos(\alpha) + x2*cos(\alpha) + y1*sin(\alpha) - y2n*sin(\alpha)[/mm]
>
> [mm]U2= (x2- x1)*cos(\alpha)+ (y1-y2)*sin(\alpha) +U1 + x1 - x2[/mm]
Dann musst Du eben 2 Gleichungen wählen,
woraus sich Tx und Ty bestimmen lassen.
Und die Lösungen dann in die verbliebene GLeichung einsetzen.
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:15 Mo 30.12.2013 | Autor: | flexbex |
Hallo also ich bräuchte jetzt nochmal hilfe dazu
erstmal ich hatte einen Tipfehler in GlII
Die Gleichungen lauten korrekt so:
$ [mm] U1=cos(\alpha)\cdot{}(x1-Tx)-sin(\alpha)\cdot{}(y1-Ty)-x1 [/mm] (I)$
$ [mm] U2=cos(\alpha)\cdot{}(x2-Tx)-sin(\alpha)\cdot{}(y2-Ty)-x2 [/mm] (II)$
$ [mm] V1=sin(\alpha)\cdot{}(x1-Tx)+cos(\alpha)\cdot{}(y1-Ty)-y1 [/mm] (III)$
gegeben: U1,U2,V1,x1,x2,y1,y2
gesucht $ [mm] Tx,Ty,\alpha [/mm] $
$ [mm] \alpha [/mm] $ ist zwischen -pi/2 : +pi/2
Ich bin jetzt wie folgt vorgegangen
(I) nach Tx auflösen
$ Tx=(U1 + x1 + [mm] sin(\alpha)*(Ty [/mm] + y1) - [mm] x1*cos(\alpha))/cos(\alpha)$
[/mm]
(III) Tx einsetzen und nach Ty auflösen
[mm] $Ty=-(y1*sin(\alpha)^2 [/mm] - [mm] V1*cos(\alpha) [/mm] - [mm] y1n*cos(\alpha) [/mm] + [mm] un1*sin(\alpha) [/mm] + [mm] x1n*sin(\alpha) [/mm] + [mm] y1n*cos(\alpha)^2)/(cos(\alpha)^2 [/mm] + [mm] sin(\alpha)^2)$
[/mm]
jetzt Ty von (III) wieder in (I) einsetzten und nach Tx auflösen
$Tx=(U1 + x1 + [mm] sin(\alpha)*(y1 [/mm] - [mm] (y1*sin(\alpha)^2 [/mm] - [mm] V1*cos(\alpha) [/mm] - [mm] y1*cos(\alpha) [/mm] + [mm] U1*sin(\alpha) [/mm] + [mm] x1n*sin(\alpha) [/mm] + [mm] y1*cos(\alpha)^2)/(cos(\alpha)^2 [/mm] + [mm] sin(\alpha)^2)) [/mm] - [mm] x1*cos(\alpha))/cos(\alpha)$
[/mm]
und schlussendlich (III) und (I) in (II)
[mm] $U2=cos(\alpha)*(x2 [/mm] + (U1 + x1 + [mm] sin(\alpha)*(y1 [/mm] - [mm] (y1*sin(\alpha)^2 [/mm] - [mm] V1*cos(\alpha) [/mm] - [mm] y1*cos(\alpha) [/mm] + [mm] U1*sin(\alpha) [/mm] + [mm] x1*sin(\alpha) [/mm] + [mm] y1n*cos(\alpha)^2)/(cos(\alpha)^2 [/mm] + [mm] sin(\alpha)^2)) [/mm] - [mm] x1*cos(\alpha))/cos(\alpha)) [/mm] - [mm] sin(\alpha)*(y2 [/mm] - [mm] (y1*sin(\alpha)^2 [/mm] - [mm] V1*cos(\alpha) [/mm] - [mm] y1*cos(\alpha) [/mm] + [mm] U1*sin(\alpha) [/mm] + [mm] x1*sin(\alpha) [/mm] + [mm] y1*cos(\alpha)^2)/(cos(\alpha)^2 [/mm] + [mm] sin(\alpha)^2)) [/mm] - x2$
bevor ich jetzt anfange umzustellen ist meine Frage wie genau funktioniert der Koeffizientenvergleich in diesem Fall ich kenne den nur von polynomen mehreren Grades aber nicht mit trigonometrischen Funktionen. Also in welche Form muß ich es bringen und wie dann weiter vorgehen.
!Anmerkung! hab schon gesehen das alle [mm] sin^2 [/mm] und [mm] cos^2 [/mm] wegfallen da diese immer paarweise auftreten also [mm] cos^2+sin^2=1 [/mm] trotzdem weiss ich nich wie ich dann am besten weiter vorgehe
Dankeschön schonmal für die Antwort
Felix
|
|
|
|
|
Hallo flexbex,
> Hallo also ich bräuchte jetzt nochmal hilfe dazu
> erstmal ich hatte einen Tipfehler in GlII
> Die Gleichungen lauten korrekt so:
> [mm]U1=cos(\alpha)\cdot{}(x1-Tx)-sin(\alpha)\cdot{}(y1-Ty)-x1 (I)[/mm]
> [mm]U2=cos(\alpha)\cdot{}(x2-Tx)-sin(\alpha)\cdot{}(y2-Ty)-x2 (II)[/mm]
>
> [mm]V1=sin(\alpha)\cdot{}(x1-Tx)+cos(\alpha)\cdot{}(y1-Ty)-y1 (III)[/mm]
>
Die Gleichung lautet nach dem Ausgangspost doch so:
[mm]V1=sin(\alpha)\cdot{}(x1\blue{+}Tx)+cos(\alpha)\cdot{}(y1\blue{+}Ty)-y1 \ (III)[/mm]
> gegeben: U1,U2,V1,x1,x2,y1,y2
> gesucht [mm]Tx,Ty,\alpha[/mm]
> [mm]\alpha[/mm] ist zwischen -pi/2 : +pi/2
>
> Ich bin jetzt wie folgt vorgegangen
> (I) nach Tx auflösen
> [mm]Tx=(U1 + x1 + sin(\alpha)*(Ty + y1) - x1*cos(\alpha))/cos(\alpha)[/mm]
>
Das musst Du nochmal nachrechen.
Hier haben sich doch eine Vorzeichenfehler eingeschlichen.
> (III) Tx einsetzen und nach Ty auflösen
> [mm]Ty=-(y1*sin(\alpha)^2 - V1*cos(\alpha) - y1n*cos(\alpha) + un1*sin(\alpha) + x1n*sin(\alpha) + y1n*cos(\alpha)^2)/(cos(\alpha)^2 + sin(\alpha)^2)[/mm]
>
> jetzt Ty von (III) wieder in (I) einsetzten und nach Tx
> auflösen
> [mm]Tx=(U1 + x1 + sin(\alpha)*(y1 - (y1*sin(\alpha)^2 - V1*cos(\alpha) - y1*cos(\alpha) + U1*sin(\alpha) + x1n*sin(\alpha) + y1*cos(\alpha)^2)/(cos(\alpha)^2 + sin(\alpha)^2)) - x1*cos(\alpha))/cos(\alpha)[/mm]
>
> und schlussendlich (III) und (I) in (II)
> [mm]U2=cos(\alpha)*(x2 + (U1 + x1 + sin(\alpha)*(y1 - (y1*sin(\alpha)^2 - V1*cos(\alpha) - y1*cos(\alpha) + U1*sin(\alpha) + x1*sin(\alpha) + y1n*cos(\alpha)^2)/(cos(\alpha)^2 + sin(\alpha)^2)) - x1*cos(\alpha))/cos(\alpha)) - sin(\alpha)*(y2 - (y1*sin(\alpha)^2 - V1*cos(\alpha) - y1*cos(\alpha) + U1*sin(\alpha) + x1*sin(\alpha) + y1*cos(\alpha)^2)/(cos(\alpha)^2 + sin(\alpha)^2)) - x2[/mm]
>
> bevor ich jetzt anfange umzustellen ist meine Frage wie
> genau funktioniert der Koeffizientenvergleich in diesem
> Fall ich kenne den nur von polynomen mehreren Grades aber
> nicht mit trigonometrischen Funktionen. Also in welche Form
> muß ich es bringen und wie dann weiter vorgehen.
>
Nachdem Du die Gleichungen (I) und (III) richtig nach Tx und Ty aufgelöst hast,
setzt Du das in Gleichung (II) ein. Dabei ist die rechte Seite dieser Gleichung
nach dem Einsetzen auf die Form
[mm]A*\sin\left(\alpha+\varphi\right)+B[/mm]
zu bringen.
Darauf lässt Du zunächst ein bestimmtes Additionstheorem los
und führst dann einen Koeffizientenvergleich durch.
Daraus bestimmen sich die unbekannten Größen [mm]A, \ B, \ \varphi[/mm].
Hier hast Du aber eine Linearkombination aus einem
trigonometrischen und einem konstanten Polynom.
> !Anmerkung! hab schon gesehen das alle [mm]sin^2[/mm] und [mm]cos^2[/mm]
> wegfallen da diese immer paarweise auftreten also
> [mm]cos^2+sin^2=1[/mm] trotzdem weiss ich nich wie ich dann am
> besten weiter vorgehe
>
> Dankeschön schonmal für die Antwort
> Felix
Gruss
MathePower
|
|
|
|