www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Gleichungssystem mit Parameter
Gleichungssystem mit Parameter < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem mit Parameter: Tipps
Status: (Frage) beantwortet Status 
Datum: 14:42 Do 10.09.2015
Autor: Chiko123

Aufgabe
Für jedes a element R (reele Zahlen) bestimme man die Lösung des linearen Gleichungssystems
I  [mm] a^2*x [/mm] + 2ay = 3a
II 2ax + [mm] a^2*y [/mm] = -3a


Hallo,

Ich habe ein wenig Probleme mit der gegebenen Aufgabe:

Meine Ideen sind eine Fallunterscheidung:
1.Fall Wenn a = 0 ist, steht ja in beiden Zeilen 0=0, also gibt es für diesen Fall unendlich viele Lösungen für x,y element R

2.Fall Wenn a ungleich 0 ist  kann man ja die Gleichung I und II durch a teilen
also I' = ax+2y=3
      II'= 2x+ay=-3

Wenn ich die beiden jetzt subtrahiere also I'- II' , habe ich dastehen:

(ax-2x) +(2y-ay) = 0 , ausklammern ergibt (a-2)x + (2-a)y = 6

Wenn a jetzt 2 ist,  steht da 0=6 also falsche Aussage, das bedeutet das es für a =2 keine Lösung gibt

So jetzt weiss ich erstens nicht, ob das so stimmt und zweitens ob es noch weitere Fälle zu beachten gibt!?

Schonmal danke :)

Mfg Chiko

        
Bezug
Gleichungssystem mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Do 10.09.2015
Autor: Gonozal_IX

Hiho,

> Meine Ideen sind eine Fallunterscheidung:

[ok]

>  1.Fall Wenn a = 0 ist, steht ja in beiden Zeilen 0=0, also
> gibt es für diesen Fall unendlich viele Lösungen für x,y
> element R

[ok]

> 2.Fall Wenn a ungleich 0 ist  kann man ja die Gleichung I
> und II durch a teilen
>  also I' = ax+2y=3
>        II'= 2x+ay=-3

[ok]
Bis auf die Notation, du solltest tunlichst vermeiden sowas zu schreiben wie "I' = ax+2y=3" das ist nämlich schlichtweg falsch.

> Wenn ich die beiden jetzt subtrahiere also I'- II' , habe
> ich dastehen:
>  
> (ax-2x) +(2y-ay) = 0 , ausklammern ergibt (a-2)x + (2-a)y =
> 6
>
> Wenn a jetzt 2 ist,  steht da 0=6 also falsche Aussage, das
> bedeutet das es für a =2 keine Lösung gibt

[ok]

Zielführender wäre es aber gewesen, eine Gleichung so umzuformen, dass man sie in die zweite einsetzen kann.
z.B. kann man I umformen zu $2y = 3-ax$ und in II kann man dann ausnutzen, dass $ay = [mm] \frac{a}{2}(2y)$ [/mm]

Gruß,
Gono


Bezug
                
Bezug
Gleichungssystem mit Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Do 10.09.2015
Autor: Chiko123

Hallo,

Erst einmal danke :), ich habe das jetzt so notiert:
Fall 1 : a = 0
I 0=0
II 0 = 0   ---> unendlich viele Lösungen für alle x,y element R

Fall 2: a ungleich 0

Da ist mir dein Umformungsvorschlag nicht ganz klar:
Der erste Schritt kann ich noch nachvollziehen, du teilst die I durch a und stellst nach 2y um also ist I 2y=3-ax
Bei der zweiten , komme ich auf was anderes ich teile II durch a und stelle nach ay um dann ist II ay= -2x -3

Nun kann ich damit nicht wirklich viel anfangen, da ja ay in I nicht vorkommt

Bezug
                        
Bezug
Gleichungssystem mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 07:14 Fr 11.09.2015
Autor: Steffi21

Hallo, für [mm] a\not=0 [/mm] hast Du

(1) ax+2y=3
(2) 2x+ay=-3

(1)' y=1,5-0,5ax

(1)' einsetzen in (2)

2x+a(1,5-0,5ax)=-3

Steffi



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de