www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Gleichungssysteme Lösen
Gleichungssysteme Lösen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssysteme Lösen: Ideen und Lösungsvorschläge
Status: (Frage) beantwortet Status 
Datum: 19:36 Di 15.03.2005
Autor: TE-MAUS

Hallo an alle Mathematikexperten,

das Problem ist eine Gleichung zu bauen, wo die Ergebnisse

X=1
Y=2
Z=3

sind. Die Werte müssen eindeutig lösbar sein.
Kann mir da jemannd weiterhelfen, bin für jeden beitrag froh.

Grüsse
TE-Maus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Gleichungssysteme Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Di 15.03.2005
Autor: MrElgusive

Hallo!

Ich würde dir folgende Gleichung vorschlagen:

[mm] $(x-1)^2 [/mm] + [mm] (y-2)^2 [/mm] + [mm] (z-3)^2=0$ [/mm]

Ich bin mir zwar nicht ganz sicher, aber ich glaube schon, dass die einzige Lösung dieser Gleichung nur durch die Variablen $x=1, y=2 und z=3$ gegeben ist.

Grüße,
  Christian.

Bezug
        
Bezug
Gleichungssysteme Lösen: wenn's linear sein darf?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Mi 16.03.2005
Autor: Peter_Pein

Hallöle,

es spricht ja auch nichts dagegen, lineare Gleichungssysteme zu konstruieren. Ich erlaube mir mal, eine zufällige Auswahl von 10 Exemplaren zu präsentieren:

1: {{{9, 6, 5}, {9, 8, 6}, {9, 8, 7}}, {36, 43, 46}}
2: {{{7, 5, 0}, {8, 5, 3}, {9, 3, 2}}, {17, 27, 21}}
3: {{{4, 1, 0}, {7, 4, 3}, {8, 5, 1}}, {6, 24, 21}}
4: {{{3, 1, 0}, {9, 5, 4}, {9, 6, 2}}, {5, 31, 27}}
5: {{{3, 1, 0}, {3, 2, 0}, {5, 2, 1}}, {5, 7, 12}}
6: {{{7, 6, 4}, {8, 4, 3}, {8, 6, 4}}, {31, 25, 32}}
7: {{{6, 2, 0}, {7, 5, 1}, {9, 8, 7}}, {10, 20, 46}}
8: {{{8, 4, 3}, {8, 5, 0}, {9, 8, 6}}, {25, 18, 43}}
9: {{{8, 4, 2}, {8, 7, 5}, {9, 6, 4}}, {22, 37, 33}}
10: {{{7, 3, 0}, {8, 4, 3}, {9, 6, 3}}, {13, 25, 30}}


Die Zeilen sind wie folgt zu interpretieren:
{Koeffizientenmatrix A (zeilenweise), Ergebnisvektor b}

es gilt [mm] $A*\vektor{1 \\ 2 \\ 3}= \vec{b}$ [/mm]

Wenn Du Spaß daran finden solltest, überleg Dir doch mal, wie man solche Gleichungssysteme konstruiert.

Alles Gute,
  Peter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de