www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Gleichwertigkeit von Aussagen
Gleichwertigkeit von Aussagen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichwertigkeit von Aussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Do 24.06.2004
Autor: tine

Hallo,
ich hab da mal wieder eine Aufgabe bei der ich etwas unterstützung brauchen könnte! Wär lieb wenn mir jemand helfen könnte!! Vielen Dank!!!
Die Aufgabe lautet:

Es sei [mm] M\subset \IR^{n} [/mm] , M [mm] \not= \emptyset, [/mm] und f: M  [mm] \to \IR^{d} [/mm]
Man zeige das folgende Aussagen Gleichwertig sind:
a) f ist stetig
b) Für alle offenen Teilmengen [mm] V\subset \IR^{d} [/mm] ist [mm] f^{-1} [/mm] (V)= M [mm] \cap [/mm] U mit einer offenen Teilmenge U [mm] \subset \IR^{n} [/mm]
c) Für alle abgeschlossenen Teilmengen [mm] C\subset \IR^{d} [/mm] ist [mm] f^{-1} [/mm] (C)= M [mm] \cap [/mm] A  mit einer abgeschlossenen Teilmenge A [mm] \subset \IR^{n} [/mm]


Dies soll für  [mm] M\subset \IR^{n} [/mm] und für [mm] M=\IR^{n} [/mm] gezeigt werden!!!


Ich hoffe es kann jemand was damit anfangen!!!
Liebe Grüße Tine

        
Bezug
Gleichwertigkeit von Aussagen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:49 Do 24.06.2004
Autor: Stefan

Hallo Tine!

Wie habt ihr denn Stetigkeit genau definiert (es gibt mehrere Möglichkeiten)?

Natürlich können wir dir erst helfen, wenn wir das genau wissen.

Liebe Grüße
Stefan

Bezug
                
Bezug
Gleichwertigkeit von Aussagen: Stetigkeit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:09 Do 24.06.2004
Autor: tine

Hallo,
wir haben die Stetigkeit definiert über Lipschitz und über folgenden Satz:
f ist stetig in x für alle  [mm] \varepsilon>0 \exists \delta> [/mm] 0: (  [mm] \vmat{ x - y }< \delta) \Rightarrow\vmat{ f(y) - f(x) }< \varepsilon [/mm]

Bezug
        
Bezug
Gleichwertigkeit von Aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 Fr 25.06.2004
Autor: Stefan

Liebe Tine!

>> Es sei [mm]M\subset \IR^{n}[/mm] , M [mm]\not= \emptyset,[/mm] und f: M  

> [mm]\to \IR^{d} [/mm]
>  Man zeige das folgende Aussagen Gleichwertig
> sind:
>  a) f ist stetig
>  b) Für alle offenen Teilmengen [mm]V\subset \IR^{d}[/mm] ist
> [mm]f^{-1}[/mm] (V)= M [mm]\cap[/mm] U mit einer offenen Teilmenge U [mm]\subset \IR^{n} [/mm]
>  
> c) Für alle abgeschlossenen Teilmengen [mm]C\subset \IR^{d}[/mm]
> ist [mm]f^{-1}[/mm] (C)= M [mm]\cap[/mm] A  mit einer abgeschlossenen
> Teilmenge A [mm]\subset \IR^{n} [/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Wir machen einen sogenannten Ringschluss und zeigen:

$(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$


"(a) \Rightarrow (b)"

Es sei $V \subset \IR^d$ offen. Zu zeigen ist, dass $f^{-1}(V) \cap M$ offen in $M$ ist. Dazu wählen wir uns ein $x \in f^{-1}(V)$. Dann gilt: $f(x) \in V$. Da $V$ offen ist, gibt es ein $\varepsilon > 0$, so dass für alle $y \in \IR^d$ mit $\Vert y - f(x) \Vert < \varepsilon$ gilt: $y \in V$. Da $f$ stetig ist, gibt es ein $\delta>0$, so dass für alle $x' \in M$ mit $\Vert x-x' \Vert <\delta$ gilt: $\Vert f(x) - f(x') \Vert < \varepsilon$ und damit $f(x') \in V$. Somit gilt für alle $x' \in M$ mit $\Vert x - x'\Vert < \delta$: $x' \in f^{-1}(V)$. Für $x \in f^{-1}(V)$ liegt also auch der "$\delta$-Ball"

$B_{\delta}(x) \cap M = \{x' \in M \, : \, \Vert x - x' \Vert < \delta\}$

in $f^{-1}(V) \cap M$, womit gezeigt ist, dass $f^{-1}(V) \cap M$ offen in $M$ ist.


"(b) \Rightarrow (c)"

Hier gebe ich mal nur einen Tipp. Wenn $C \subset \IR^d$ abgeschlossen ist, dann ist $\IR^d \setminus C$ offen und es gilt:

$f^{-1}(\IR^d \setminus C) = \IR^n \setminus f^{-1}(C)$.

Wie kann man den Beweis nun zu Ende führen? Mach mal einen Vorschlag.


"(c) \Rightarrow (a)"

Es sei $x \in M$ und $\varepsilon>0$ beliebig gewählt. Die Menge

$C:= \{y \in \IR^d\, :\, \Vert y - f(x) \Vert \ge \varepsilon\}$

ist abgeschlossen in $\IR^d$. Dann ist $f^{-1}(C) \cap M$ nach Voraussetzung abgeschlossen in $M$ und somit:

$V:= \{x' \in M \, : \, \Vert f(x') - f(x) \Vert < \varepsilon\} = M \cap f^{-1}(\IR^d \setminus C\} = M \cap (\IR^n \setminus f^{-1}(C))$

offen in $M$ mit $x \in V$. Daraus folgt: Es gibt ein $\delta  > 0$ mit

$B_{\delta}(x) \cap M \subset V$.

"Übersetzt" bedeutet dies: Für alle $x' \in M$ mit $\Vert x - x'\Vert < \delta$ gilt:
$\Vert f(x) - f(x') \Vert < \varepsilon$. Daraus folgt die Stetigkeit in $x$.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de