www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - Globales Maximum
Globales Maximum < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Globales Maximum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Sa 18.04.2009
Autor: gaugau

Aufgabe
$ f(t) = t + t [mm] \* [/mm] ln(t) , t [mm] \in [/mm] ]0,05;1[ $
$ f'(t) = 2 + ln(t) $
$ f''(t) = 1/t $

Hallo zusammen,

einer Aufgabe zufolge soll ich die oben angegebene Funktion auf ein globles Minimum untersuchen.

Dieses (einziger Extrempunkt) befindet sich bei [mm] t=e^{-2} [/mm] im Punkt [mm] TP(e^{-2}|-e^{-2}) [/mm] .

Indem ich zeige, dass
$ f'(t) [mm] \le [/mm] 0 $ für alle $ 0,05 < t < [mm] e^{-2} [/mm] $
und
$ f'(t) [mm] \ge [/mm] 0 $ für alle $ [mm] e^{-2} [/mm] < t < 1 $
gilt, beweise ich ja, dass TP ein globales Minimum ist.

Reicht es diese 2 Zeilen zu schreiben oder muss ich das mathematisch noch weiter ausführen? Wie würde ich soetwas dann machen?

Ich könnte mir folgendes vorstellen, aber weiß nicht, ob das richtig bzw. ausreichend ist für eine Begründung.
$ f'(t) [mm] \le [/mm] 0 $ für alle $ 0,05 < t < [mm] e^{-2} [/mm] $ , da $ ln(t) < 2 $ für $ 0,05 < t < [mm] e^{-2} [/mm] $

Danke für eure Hilfe.

        
Bezug
Globales Maximum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Sa 18.04.2009
Autor: abakus


> [mm]f(t) = t + t \* ln(t) , t \in ]0,05;1[[/mm]
>  [mm]f'(t) = 2 + ln(t)[/mm]
>  
> [mm]f''(t) = 1/t[/mm]
>  Hallo zusammen,
>  
> einer Aufgabe zufolge soll ich die oben angegebene Funktion
> auf ein globles Minimum untersuchen.
>  
> Dieses (einziger Extrempunkt) befindet sich bei [mm]t=e^{-2}[/mm] im
> Punkt [mm]TP(e^{-2}|-e^{-2})[/mm] .
>  
> Indem ich zeige, dass
> [mm]f'(t) \le 0[/mm] für alle [mm]0,05 < t < e^{-2}[/mm]
>  und
>  [mm]f'(t) \ge 0[/mm] für alle [mm]e^{-2} < t < 1[/mm]
>  gilt, beweise ich ja,
> dass TP ein globales Minimum ist.
>  
> Reicht es diese 2 Zeilen zu schreiben oder muss ich das
> mathematisch noch weiter ausführen? Wie würde ich soetwas
> dann machen?
>  
> Ich könnte mir folgendes vorstellen, aber weiß nicht, ob
> das richtig bzw. ausreichend ist für eine Begründung.
>  [mm]f'(t) \le 0[/mm] für alle [mm]0,05 < t < e^{-2}[/mm] , da [mm]ln(t) < 2[/mm] für
> [mm]0,05 < t < e^{-2}[/mm]
>  
> Danke für eure Hilfe.

Hallo,
im Gegensatz zum lokalen Minimum recht es nict aus, dass der Funktionswert an der Stelle mit dem Minimum kleiner sind als "die Funktionswerte in der näheren Nachbarschaft", sondern, dass es sich um den kleinsten Funktionswert für den gesamten Definitionsbereich handelt.
Wo liegen die Probleme?
1) Bei mehreren lokalen Minima kann nur das mit dem allerkleinsten Funktionswert globales Minimum sein.
2) Es ist möglich, dass die Funktionswerte in der oberen oder unteren Intervallgrenze kleiner sind als beim lokalen Minimum, dann ist das globale Minimum dort.
3) Es könnte sich um offene Intervalle handeln, wo in der Nähe der Intervallgrenzen die Funktionswerte kleiner sind als beim lokalen Minimum, wo es aber keinen kleinsten Wert gibt, weil die Intervallgrenze nicht mit zum Definitionsbereich zälht.
Da es sich bei deiner Aufgabe um ein offenens Intervall handelt, kann es also passieren, dass es kein globales Minimum gibt.
Achte also bei deiner Argumentation vor allem darauf.
Gruß Abakus


Bezug
                
Bezug
Globales Maximum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Sa 18.04.2009
Autor: gaugau


>  1) Bei mehreren lokalen Minima kann nur das mit dem
> allerkleinsten Funktionswert globales Minimum sein.

>  2) Es ist möglich, dass die Funktionswerte in der oberen
> oder unteren Intervallgrenze kleiner sind als beim lokalen
> Minimum, dann ist das globale Minimum dort.
>  3) Es könnte sich um offene Intervalle handeln, wo in der
> Nähe der Intervallgrenzen die Funktionswerte kleiner sind
> als beim lokalen Minimum, wo es aber keinen kleinsten Wert
> gibt, weil die Intervallgrenze nicht mit zum
> Definitionsbereich zälht.
>  Da es sich bei deiner Aufgabe um ein offenens Intervall
> handelt, kann es also passieren, dass es kein globales
> Minimum gibt.
>  Achte also bei deiner Argumentation vor allem darauf.
>  Gruß Abakus

Allgemein würde ich dir Recht geben, aber ich meinem Fall habe ich mit der Argumentation den Fall ausgeschlossen und somit ist die Überprüfung des Randextremums nicht notwendig:

Denn indem ich gezeigt habe, dass TP einziger lokale Tiefpunkt ist UND dass der Graph links nur sinkt bzw. rechts steigt, können kleinere Funktionswerte als [mm] f(TP_{y}) [/mm] nicht erreicht werden...

Bezug
                        
Bezug
Globales Maximum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Sa 18.04.2009
Autor: Gonozal_IX

Hallo gaugau,

in diesem Fall jetzt reicht deine Argumentation, weil du über die erste Ableitung ja argumentiert hast, dass dein gefundenes Minimum globales Minimum sein muss, da in beide Richtungen die Funktionswerte nur ansteigen und niemals abfallend sind.

Je nach Penibilität deiner Lehrer könnte man noch erwähnen, dass die Funktion auf dem gegebenen Intervall stetig ist und somit keine Sprünge auftreten können........... aber das ist hier auch offensichtlich.

Insofern passt deine Argumentation bei dieser Aufgabe.

MfG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de