www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Goldener Schnitt im Dreieck
Goldener Schnitt im Dreieck < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Goldener Schnitt im Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:05 Fr 21.07.2006
Autor: Sweetyfa

Aufgabe
In einem rechwinkligen Dreieck teilt der Hoehenfusspunkt D die Hypotenuse im Verhaeltnis des goldenen Schnitts (p<q, p+q=c). Berechnen Sie a, b, c, h und q in Abhaengigkeit von p und bestimmen sie alpha und beta.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: []http://www.mathehotline.de/mathe4u/hausaufgaben/messages/4244/474284.html

Ist es überhaupt möglich, die restlichen Seiten des Dreiecks nur in Abhängigkeit von p anzugeben?
aus dem Teilungsverhältnis des goldenen Schnitts weiss ich:  [mm] \bruch{q}{p} [/mm] =  [mm] \bruch{c}{q}. [/mm] Daraus kann ich für die Seiten folgendes ableiten:
c=  [mm] \wurzel{cp}+p [/mm]
q=  [mm] \bruch{q^2-p^2}{p} [/mm]
[mm] a^2=cp [/mm]

[mm] h^2= \wurzel{c*p^3} [/mm]

[mm] b^2= \wurzel{c^3*p} [/mm]
aber die Seiten nur in Abhängigkeit von p ist meiner Meinung nach gar nicht möglich.
Auch weiss ich nicht wie ich daruas dann [mm] \alpha [/mm] und [mm] \beta [/mm] berechnen kann.
sin [mm] \alpha [/mm] =  [mm] \bruch{\wurzel{cp}}{\wurzel{cp}+p} [/mm]
aber das kann doch nie eine genaue Zahl ergeben.

Also irgendwo muss da doch ein Denkfehler sein oder ist es möglich alle Seiten nur durch p auszudrücken um dann [mm] \alpha [/mm] und [mm] \beta [/mm] zu berechnen?
Wäre echt toll, wenn ihr mir helfen könntet.

        
Bezug
Goldener Schnitt im Dreieck: ist doch alles bekannt
Status: (Antwort) fertig Status 
Datum: 11:27 Fr 21.07.2006
Autor: statler

Hallo Sweetyfa und [willkommenmr]

Wenn das so ist wie in der Aufgabe beschrieben, dann ist doch q = [mm] \Phi [/mm] *p mit der Großen Goldenen Schnittzahl [mm] \Phi \approx [/mm] 1,6...
oder vllt besser [mm] \Phi [/mm] =  [mm] \bruch{1}{2}*(\wurzel{5} [/mm] + 1)
und nun kannst du mit Pythagoras, Euklid und evtl. TR dein Dreieck restlos ausrechnen, oder übersehe ich jetzt was?

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de