www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Goniometrische Gleichung
Goniometrische Gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Goniometrische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:31 Mo 28.07.2008
Autor: AbraxasRishi

Aufgabe
[mm] 0=tan(\bruch{x}{3}+1,1) [/mm]

Hallo allerseits!

Ich habe noch einige Fragen zu dieser Aufgabe. Könnte mir bitte jemand weiterhelfen.

Es gilt ja [mm] tan(x)=tan(\pi+x) [/mm] also im Gradmaß [mm]tan(x)=tan(180+x)[/mm]

Ich habe versucht die Gleichung so zu lösen:

[mm] \bruch{x}{3}+1,1=arctan(0)+k*180° [/mm]

[mm] \bruch{x}{3}=arctan(0)-1,1+k*180° [/mm]

[mm]x=-3,3+k*180°*3[/mm]

Stimmt das soweit?Jedenfalls scheint der Wert -3,3 zu stimmen.Rechne ich mein Ergebniss jetzt aber ins Bogenmaß um, stimmt es mit der Probe nicht mehr.Was mache ich falsch?

[mm]\bruch{-3,3*\pi}{180}=-0,0575+k*3\pi [/mm]

[mm] 0\not=tan(\bruch{-0,0575}{3}+1,1) [/mm]

Noch ein Problem:
Ich habe nachgelesen die Periodenlänge der Tangensfunktion ist [mm] \pi=180°. [/mm]

[mm]x=-3,3+180°*3[/mm]  erfüllt die Gleichung aber nicht mehr...Was stimmt nicht?

Vielen Dank!

Gruß

Angelika



        
Bezug
Goniometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Mo 28.07.2008
Autor: abakus

Hallo,
so sieht es aus:
[Dateianhang nicht öffentlich]
Gruß Abakus


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
        
Bezug
Goniometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Mo 28.07.2008
Autor: M.Rex

Hallo Angelika

Ich würde erstmal "nur" eine Lösung suchen, die Restlichen ergeben sich dann aus der Periodizität.

Also:

$ [mm] 0=tan(\bruch{x}{3}+1,1) [/mm] $
[mm] \gdw \arctan(0)=\arctan(\tan(\bruch{x}{3}+1,1)) [/mm]
[mm] \gdw 0=\bruch{x}{3}+1,1 [/mm]
[mm] \gdw -1,1=\bruch{x}{3} [/mm]
[mm] \gdw-3,3=x [/mm]
(im Bogenmass)

Und im Bogenmass ist die Periodenlänge des Tangens [mm] 180°\hat=\pi [/mm]
Da die Funktion mit [mm] \bruch{1}{3} [/mm] getaucht ist, werden nur alle [mm] 3\pi [/mm] die Werte erreicht, die die Gleichung lösen.

Also sind die Lösungen:

[mm] x=-3,3+3k\pi, [/mm] mit [mm] k\in\IZ [/mm]


Hier mal die Skizze dazu:

[Dateianhang nicht öffentlich]

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Bezug
                
Bezug
Goniometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Mo 28.07.2008
Autor: AbraxasRishi

Hallo!

Ich danke euch!Mein Problem war, dass ich annahm mein Ergebniss sei im Gradmaß, weil ich meinen Rechner im Gradmaß eingestellt hatte....Aber in dem Soderfall arctan(0) ist es für das Ergebniss scheinbar irrelevant ob ich mit Grad-oder Bogenmaß rechne.Das habe ich nicht berücksichtigt und so das Bogenmaß nochmal ins Bogenmaß umgerechnet. Klar, dass das Ergebniss dann falsch war.

Gruß

Angelika

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de