Grad der Körpererweiterung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:49 Do 30.11.2006 | Autor: | shark4 |
Aufgabe | Sei [mm]L/K[/mm] eine Körpererweiterung, [mm]a, b \in L[/mm] seien algebraisch über [mm]K[/mm] mit [mm][K(a) : K][/mm] und [mm][K(b) : K][/mm] teilerfremd. Bestimmen Sie den Grad von [mm]K(a, b)/K[/mm]. |
Ich weiß zwar, dass [mm][K(a, b) : K] = [K(a, b) : K(a)] \cdot [K(a) : K][/mm] und [mm][K(a, b) : K] = [K(a, b) : K(b)] \cdot [K(b) : K][/mm].
Daraus folgt [mm][K(a, b) : K(a)] \cdot [K(a) : K] = [K(a, b) : K(b)] \cdot [K(b) : K][/mm] und da [mm][K(a) : K][/mm] und [mm][K(b) : K][/mm] teilerfremd müsste doch eigentlich folgen [mm][K(a) : K] = [K(a, b) : K(b)][/mm] und [mm][K(a, b) : K(a)] = [K(b) : K][/mm].
Also müsste der Grad theoretisch [mm][K(a) : K] \cdot [K(b) : K][/mm] sein. Stimmt das, oder hab ich irgendwo einen Denkfehler?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:55 Do 30.11.2006 | Autor: | felixf |
Hallo!
> Sei [mm]L/K[/mm] eine Körpererweiterung, [mm]a, b \in L[/mm] seien
> algebraisch über [mm]K[/mm] mit [mm][K(a) : K][/mm] und [mm][K(b) : K][/mm]
> teilerfremd. Bestimmen Sie den Grad von [mm]K(a, b)/K[/mm].
> Ich
> weiß zwar, dass [mm][K(a, b) : K] = [K(a, b) : K(a)] \cdot [K(a) : K][/mm]
> und [mm][K(a, b) : K] = [K(a, b) : K(b)] \cdot [K(b) : K][/mm].
>
> Daraus folgt [mm][K(a, b) : K(a)] \cdot [K(a) : K] = [K(a, b) : K(b)] \cdot [K(b) : K][/mm]
> und da [mm][K(a) : K][/mm] und [mm][K(b) : K][/mm] teilerfremd müsste doch
> eigentlich folgen [mm][K(a) : K] = [K(a, b) : K(b)][/mm] und [mm][K(a, b) : K(a)] = [K(b) : K][/mm].
Wegen der Teilerfremdheit folgt erstmal nur $[K(a) : K] [mm] \mid [/mm] [K(a, b) : K(b)]$ und $[K(b) : K] [mm] \mid [/mm] [K(a, b) : K(a)]$. Da jedoch $[K(b)(a) : K(b)] [mm] \le [/mm] [K(a) : K]$ und $[K(a)(b) : K(a)] [mm] \le [/mm] [K(b) : K]$ gilt (Minimalpolynome werden hoechstens kleiner) folgt die Gleichheit.
> Also müsste der Grad theoretisch [mm][K(a) : K] \cdot [K(b) : K][/mm]
> sein. Stimmt das, oder hab ich irgendwo einen Denkfehler?
Ja, das stimmt so.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:53 Sa 02.12.2006 | Autor: | shark4 |
Danke für die schnelle Antwort, Felix.
LG Chris
|
|
|
|