www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Gradient Richtung
Gradient Richtung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient Richtung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Fr 14.10.2011
Autor: EulerLevi

Aufgabe
Hallo,
ich habe ein kleines Problem:

der Gradient der Funktion f=x²+x² ist (2x/2x). Er zeigt ja in Richtung des steilsten Anstiegs.
Wenn ich mir die Funktion f vorstelle, dann sehe ich eine um die z-Achse rotierte Parabel. Berechne ich nun den steilsten Anstieg des Punktes P (1/1), so komme ich auf einen Gradienten von (2/2). Der Gradient zeigt ja immer in Richtung des steilsten Anstiegs. Der Betrag des steilsten Anstiegs ist ja dann Wurzel aus 4 .
Dieser Gradient zeigt doch aber parallel zur x-y-Ebene.

Aber ich verstehe nicht, warum die Richtung des Anstiegs keine z-Komponente beinhaltet.
Angenommen ich würde mich in diesem Körper am Punkt P befinden und ich möchte den Weg des steilsten Anstiegs nehmen, dann erfahre ich doch eine Höhenänderung delta f, die aber im Gradient nicht auftaucht?

Ich wäre für eure Hilfe sehr dankbar.

Noch einen schönen Abend
Sascha

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gradient Richtung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Fr 14.10.2011
Autor: leduart

Hallo
[mm] f=x^2+x^2=2x^2 [/mm] hat ne Ableitung die man i.A. nicht Gradient nennt.
der Graph ist keine Fläche sondern ne Parabel.
bis dann lula



Bezug
                
Bezug
Gradient Richtung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:39 Fr 14.10.2011
Autor: EulerLevi

Oh, tut mir leid. Die Funktion sollte so heißen: f(x,y)=x²+y², der Gradient wäre dann (2x/2y)

Bezug
        
Bezug
Gradient Richtung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:35 Sa 15.10.2011
Autor: leduart

Hallo
wenn du auf einem Berg stehst in der Höhe z,  bei x=y stehst und entscheiden willst, in welcher Richtung es am steilsten nach unten geht (oder nach oben) gibst du doch auch nur eine Richtung an, nach unten gehts dann von alleine, wenn also die x Richtung Richtung Ost ginge, die y- Richtung nach Nord, wäre hier dein steilster Anstieg in NO Richtung, der Berg ist umso steiler, je grösser x und y ist wenn du um den Berg rum gehen willst gehst du auf dem Kreis [mm] x^2+y^2=h(=z) [/mm]
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de