www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient & Tangentialebene
Gradient & Tangentialebene < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient & Tangentialebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Fr 18.09.2009
Autor: maschbaustud

Aufgabe
Durch die Gleichung [mm] f(x)=x^3-2y^2-2z^3+2xy+3xz-2=0[/mm] ist eine Fläche im Raum gegeben. Berechnen Sie im Punkt P=(1,1,1)
a) den Gradienten in (x,y)-Richtung
b) die Gleichung der Tangentialebene an diese Fläche

Ich bin mir bei dieser Aufgabe nicht so ganz sicher, ob mein Lösungsansatz richtig ist.

a) ich habe die erste Ableitung nach x und die erste Ableitung nach y gebildet. Dann sähe mein Gradient so aus: [mm] grad=\pmat{ 3x^2+2y+3z \\ -4y+2x } [/mm] und für den Punkt P [mm] grad_P=\pmat{ 8 \\ -2 } [/mm]

b) hier bin ich mir jetzt nicht so ganz sicher was der richtige Weg ist. In meiner Formelsammlung habe ich diesen Hinweis gefunden: "Bei einem ebenen Feld verschwindet die dritte Komponente" (Papula) heißt das ich muss nur mit dem x,y-Gradienten die Tangentialebene bestimmen? Das sähe ja dann so aus: [mm] grad_P * (r-r_P)=\pmat{ 8 \\ -2 }*(r-r_P)=\pmat{ 8 \\ -2 }* \pmat{ x-1 \\ y-1 }= 8x-5-2y[/mm]
oder muss ich doch mit dem dreidimensionalen Gradienten rechnen?
[mm] grad=\pmat{ 3x^2+2y+3z \\ -4y+2x \\ -6z^2+3x } grad_p*(r-r_p)=\pmat{ 8 \\ -2 \\ -3 } \pmat{ x-1 \\ y-1 \\z-1 }=8x-2y-3z+4[/mm]

        
Bezug
Gradient & Tangentialebene: Dreidimensional
Status: (Antwort) fertig Status 
Datum: 13:01 Sa 19.09.2009
Autor: Infinit

Hallo,
der Gradient ist ja gerade der Normalenvektor auf die Fläche und insofern ist die Rechnung mit dem vollständigen Gradienten okay. Das Skalarprodukt zwischen dem Normalenvektor und jedem beliebiegn Vektor in Ebene ist Null und insofern sollte es komplett heißen:
$$ 8x - 2y -3z +4 = 0 $$
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de