www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Graduierter Ring, Homog. Ideal
Graduierter Ring, Homog. Ideal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graduierter Ring, Homog. Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:38 Mo 12.01.2015
Autor: UniversellesObjekt

Aufgabe
Sei $R$ ein [mm] $\IN$-graduierter [/mm] Ring und $I$ ein homogenes Ideal, das von homogenen Elementen [mm] $h_i$ [/mm] erzeugt werde. Sei [mm] $h\in [/mm] I$ ein homogenes Element. Dann kann man [mm] $h=\sum a_ih_i$ [/mm] schreiben mit [mm] $a_i$ [/mm] homogen vom Grad [mm] $\deg h-\deg h_i$. [/mm]

Hallo,

diese Aussage steht bei mir unbewiesen im Fließtext, vermutlich ist die Aussage also trivial, ich kann sie aber nicht einsehen. Kann mir jemand helfen?

Liebe Grüße,
UniversellesObjekt

        
Bezug
Graduierter Ring, Homog. Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Mo 12.01.2015
Autor: felixf

Moin!

> Sei [mm]R[/mm] ein [mm]\IN[/mm]-graduierter Ring und [mm]I[/mm] ein homogenes Ideal,
> das von homogenen Elementen [mm]h_i[/mm] erzeugt werde. Sei [mm]h\in I[/mm]
> ein homogenes Element. Dann kann man [mm]h=\sum a_ih_i[/mm]
> schreiben mit [mm]a_i[/mm] homogen vom Grad [mm]\deg h-\deg h_i[/mm].

Schreibe $h = [mm] \sum_i b_i h_i$ [/mm] mit [mm] $b_i \in [/mm] R$. Schreibe [mm] $b_i [/mm] = [mm] \sum_{n\in\IN} b_{in}$ [/mm] mit [mm] $b_{in} \in R_n$. [/mm] Dann ist [mm] $b_i h_i [/mm] = [mm] \sum_{n \ge 0} b_{in} h_i \in [/mm] I$. Sei nun [mm] $a_i [/mm] := [mm] b_{in}$ [/mm] mit $n = [mm] \deg [/mm] h - [mm] \deg h_i$ [/mm] falls [mm] $\deg [/mm] h [mm] \ge \deg h_i$, [/mm] und [mm] $a_i [/mm] := 0$ sonst. Jetzt muss wegen der Graduierung $h = [mm] \sum_i a_i h_i$ [/mm] sein.

(Du brauchst hier gar nicht explizit, dass $I$ graduiert ist: es reicht aus, dass es von homogenen Elementen erzeugt wird. Tatsächlich gilt: $I$ ist genau dann graduiert, wenn es von homogenen Elementen erzeugt werden kann.)

LG Felix


Bezug
                
Bezug
Graduierter Ring, Homog. Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Sa 07.02.2015
Autor: UniversellesObjekt

Hallo Felix,

und danke sehr für deine Antwort! Ich bin leider in der letzten Zeit unter anderem abiturbedingt etwas von dieser Thematik abgedriftet. Ich würde aber gerne noch einmal darauf zurückkommen. Mir wird leider nicht klar, wie ich aus der Graudierung schließen kann, dass [mm] $h=\sum a_ih_i$. [/mm] Könntest du das noch einmal ausführen?

Liebe Grüße,
UniversellesObjekt

Bezug
                        
Bezug
Graduierter Ring, Homog. Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Sa 07.02.2015
Autor: felixf

Moin UO,

> und danke sehr für deine Antwort! Ich bin leider in der
> letzten Zeit unter anderem abiturbedingt etwas von dieser
> Thematik abgedriftet. Ich würde aber gerne noch einmal
> darauf zurückkommen. Mir wird leider nicht klar, wie ich
> aus der Graudierung schließen kann, dass [mm]h=\sum a_ih_i[/mm].
> Könntest du das noch einmal ausführen?

Sei $R = [mm] \bigoplus_{n\in\IN} R_n$. [/mm]

Wegen $h = [mm] \sum_i b_i h_i [/mm] = [mm] \sum_i \sum_n b_{in} h_i$ [/mm] und da [mm] $h_i$ [/mm] homogen ist -- genauer [mm] $h_i \in R_{\deg h_i}$ [/mm] -- hast du $h = [mm] \sum_i \sum_n b_{in} h_i$ [/mm] mit [mm] $b_{in} h_i \in R_{n + \deg h_i}$. [/mm] Indem du anders summierst, kannst du also $h = [mm] \sum_n \sum_i b_{i,n - \deg h_i} h_i$ [/mm] schreiben (mit [mm] $b_{in} [/mm] = 0$ für $n < 0$), und hast [mm] $\sum_i b_{i,n - \deg h_i} h_i \in R_n$. [/mm] Da $h$ homogen ist, mit $h [mm] \in R_{\deg h}$, [/mm] ist also [mm] $\sum_i b_{i,n - \deg h_i} h_i [/mm] = 0$ für alle $n [mm] \neq \deg [/mm] h$, womit du $h = [mm] \sum_i b_{i,\deg h - \deg h_i} h_i$ [/mm] hast.

Mit [mm] $a_i [/mm] := [mm] b_{i,\deg h - \deg h_i} \in R_{\deg h - \deg h_i}$ [/mm] hast du also $n = [mm] \sum_i a_i h_i$ [/mm] mit [mm] $a_i$ [/mm] homogen von Grad [mm] $\deg [/mm] h - [mm] \deg h_i$. [/mm]

LG Felix


Bezug
                                
Bezug
Graduierter Ring, Homog. Ideal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Sa 07.02.2015
Autor: felixf

Moin!

> Sei [mm]R = \bigoplus_{n\in\IN} R_n[/mm].

Vielleicht ist das ganze etwas einfacher zu sehen, wenn du dir $R$ als Menge von Folgen [mm] $(r_0, r_1, r_2, \dots)$ [/mm] vorstellst mit [mm] $r_i \in R_i$. [/mm] Multiplikation mit [mm] $h_i$ [/mm] ist eine Verschiebung der Folge um [mm] $\deg h_i$ [/mm] und Multiplikation jedes einzelnden Eintrags mit [mm] $h_i$, [/mm] also $(0, [mm] \dots, [/mm] 0, [mm] r_0 h_i, r_1 h_i, r_2 h_i, [/mm] ...)$ mit dem ersten Eintrag [mm] $\neq [/mm] 0$ an der [mm] $(\deg h_i)$-ten [/mm] Stelle.

LG Felix


Bezug
                                
Bezug
Graduierter Ring, Homog. Ideal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:50 So 08.02.2015
Autor: UniversellesObjekt

Vielen Dank Felix!

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de