www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gram-Schmidt-Verfahren
Gram-Schmidt-Verfahren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gram-Schmidt-Verfahren: im R^4
Status: (Frage) beantwortet Status 
Datum: 18:10 So 10.09.2006
Autor: hooover

Aufgabe
[mm] \overrightarrow{v_{1}}=\vektor{1 \\ 1 \\ 0 \\ 0}, \overrightarrow{v_{2}}=\vektor{1 \\ 1 \\ 1 \\ 0}, \overrightarrow{v_{3}}=\vektor{1 \\ 0 \\ 1 \\ 0}, \overrightarrow{v_{4}}=\vektor{0 \\ 1 \\ 0 \\ 1} [/mm]

Wende das Gram Schmidt Verfahren auf die Basis [mm] B={\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}} [/mm] an ,um diese Basis in eine Orthonormalbasis [mm] B_{0}={{\overrightarrow{w_{1}}, \overrightarrow{w_{2}}, \overrightarrow{w_{3}}, \overrightarrow{w_{4}} }} [/mm] umzurechnen.

Einen schönen Sonntag euch allen,

ich hab das gemacht und wollte wissen ob meine Lsg. richtig ist.

Da das sehr viel Tippaufwand ist, werd ich erstmal nur meinen Lösungsweg mit der dazugehörigen Lösung presntieren, wenn das ok ist.

Wenn ich fehler gemacht habe erläutere ich gern meine einzelnen Rchenschritte
also

[mm] \overrightarrow{v_{1}}\not=\overrightarrow{w_{1}}=\frac{\overrightarrow{v_{1}}}{||\overrightarrow{v_{1}}||} [/mm]

[mm] \overrightarrow{l_{2}}=\overrightarrow{v_{2}}-<\overrightarrow{v_{2}},\overrightarrow{w_{1}}>\overrightarrow{w_{1}}=\overrightarrow{w_{2}} [/mm]

[mm] \overrightarrow{l_{3}}=\overrightarrow{v_{3}}-<\overrightarrow{v_{3}},\overrightarrow{w_{1}}>\overrightarrow{w_{1}}-<\overrightarrow{v_{3}},\overrightarrow{w_{2}}>\overrightarrow{w_{2}}=\overrightarrow{w_{3}} [/mm]

[mm] \overrightarrow{l_{4}}=\overrightarrow{v_{4}}-<\overrightarrow{v_{4}},\overrightarrow{w_{1}}>\overrightarrow{w_{1}}-<\overrightarrow{v_{4}},\overrightarrow{w_{2}}>\overrightarrow{w_{2}}-<\overrightarrow{v_{4}},\overrightarrow{w_{3}}>\overrightarrow{w_{3}} [/mm]


[mm] \frac{\overrightarrow{l_{4}}}{||\overrightarrow{l_{4}}||}=\overrightarrow{w_{4}} [/mm]




$ONB [mm] =(\vektor{\frac{1}{\wurzel{2}} \\ \frac{1}{\wurzel{2}} \\0 \\ 0}, \vektor{-1 \\ -1 \\ 1 \\ 0},\vektor{-\frac{1}{2} \\ 0 \\ 0\\ 0},\vektor{0 \\ -\frac{2}{5} \\ 0 \\ \frac{4}{5}})$ [/mm]

Vielen Dank für eure Hilfe Gruß hooover



        
Bezug
Gram-Schmidt-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 So 10.09.2006
Autor: EvenSteven

Für den Gramschmidt musst du noch ein Skalarprodukt angeben.
Ich nehme mal an, es sollte das Standardskalarprodukt sein (auch Euklidisches Skalarprodukt genannt). In diesem Fall hast du falsch gerechnet, denn ausser den letzten beiden Vektoren sind keine orthogonal zueinander.
Allgemein:
Man setzt (wie du richtig gemacht hast)
[mm] $l_{1}=v_{1}$ [/mm]

Die Formel für den jeweils nächsten Vektor berechnet sich zu

[mm] $l_{k+1}= v_{k+1} [/mm] - [mm] \summe_{i=1}^{k} \bruch{(v_{k+1},l_{i})}{(l_{i},l_{i})}*l_{i}$ [/mm]

Wobei [mm] $v_{k}$ [/mm] die gegebenen "Startvektoren" sind und [mm] $l_{k}$ [/mm] der zu den bereits berechneten Vektoren orthogonale ist. Am Schluss muss man noch die Vektoren [mm] $l_{k}$ [/mm] normieren, damit du auch eine Orthonormalbasis hast.

Rechne das mal so durch und du kriegst (hoffentlich) etwas sinnvolleres ;-)

Ciao

EvenSteven

Bezug
                
Bezug
Gram-Schmidt-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 So 10.09.2006
Autor: hooover

Hallo,

ok ich habe das alles nochmal nachvollzogen und gesehen das ich da einige fehler gemacht habe

bin mir aber dennoch nicht sicher ob das stimmt,

hier ist die nachgebesserte Lsg.:


$ ONB [mm] =(\frac{1}{\wurzel{2}}\vektor{1 \\ 1 \\0 \\ 0}, \vektor{0 \\ 0 \\ 1 \\ 0},\wurzel{2}\vektor{\frac{1}{2} \\ -\frac{1}{2} \\ 0 \\ 0},\frac{1}{\wurzel{6}}\vektor{-2 \\ 1 \\ 0 \\ 1 }) [/mm] $

vielen DAnk gruß hooover

Bezug
                        
Bezug
Gram-Schmidt-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 So 10.09.2006
Autor: EvenSteven


> Hallo,
>  
> hier ist die nachgebesserte Lsg.:
>  
>
> [mm]ONB =(\frac{1}{\wurzel{2}}\vektor{1 \\ 1 \\0 \\ 0}, \vektor{0 \\ 0 \\ 1 \\ 0},\wurzel{2}\vektor{\frac{1}{2} \\ -\frac{1}{2} \\ 0 \\ 0},\frac{1}{\wurzel{6}}\vektor{-2 \\ 1 \\ 0 \\ 1 })[/mm]
>
> vielen DAnk gruß hooover

Ja das sieht schon viel besser aus. Die ersten drei sind richtig, doch der letzte ist z.B. nicht orthogonal zum ersten Vektor. Das wäre der richtige:
[mm] $\vektor{0 \\ 0 \\ 0 \\ 1 }$ [/mm]
Tipp: Der zweite Summand, den du abziehen musst, des letzten Schrittes von Gram-Schmidt ist Null, da [mm] $v_{4}$ [/mm] orthogonal zu [mm] $l_{2}$ [/mm] ist.

Tschüss

EvenSteven

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de