www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Gram-Schmidt-Verfahren
Gram-Schmidt-Verfahren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gram-Schmidt-Verfahren: Anwendung auf Polynome...
Status: (Frage) beantwortet Status 
Datum: 16:43 So 13.11.2011
Autor: JohnB

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Im Raum P_{n} definiere man das innere Produkt durch
$(p,q)=\integral_{0}^{1}{p(x)*\overline{q(x)} dx}$
für $p,q \in P_{n}$

Man wende das Orthogonalisierungsverfahren von Gram-Schmidt auf das System ${1,z,z^2}$ im Raum $P_{2}$ an, um die Orthogonalbasis
${1, \wurzel[2]{3}*(2*z-1), \wurzel[2]{5}*(6*z^2-6*z+1)$
im $P_{2}$ zu bekommen.








$P_{n}$ ist die Menge der Polynome, wie aus vorherigen Aufgabenstellungen ersichtlich ist.

Dass der erste Teil der Orthogonalbass 1 ist, ist trivial, ab dem zweiten frage ich mich, wie man das genau macht.
Ich versuche einfach, meinen Weg dazustellen und vielleicht findet ihr ja die Fehler.

Da das System aus Polynomen besteht, ist auch Zweiteres ein Polynom mit $p(z)=0*z^2+1*z+0=z$ ,
soweit ich das verstehe.

Die Formel zur Berechnung der Basis:

$v_{n}=\bruch{w_{n}-\summe_{i=1}^{n-1}(w_{n},v_{i})*v_{i}}{\parallel w_{n}-\summe_{i=1}^{n-1}(w_{n},v_{i})*v_{i}\parallel}$

Um die zweite Basis auszurechnen: $w_{n}=w_{2}=z$

Erstmal der Zähler: $w_{2}-\summe_{i=1}^{2-1}(w_{2},v_{1})*v_{1}=z-(z,1)*1$

Das Skalarprodukt kann ich mit der Definition oben berechnen:

$\integral_{0}^{1}{z dz}=\bruch{1}{2}$

Daraus ergibt sich im Zähler:

$z-\bruch{1}{2}$

Für den gesamten Bruch:

$\bruch{z-0,5}{\wurzel[2]{\integral_{0}^{1}{(z-0,5)*(z-0,5) dz}}}=\bruch{z-0,5}{\bruch{\wurzel[2]{105}}{15}}=\bruch{\wurzel[2]{105}*(2+z-1)}{14}$

Das ist ja nicht das Gleiche, wie in der Aufgabestellung steht.

Wo liegt mein Fehler? :(

Danke für Hilfe :)

        
Bezug
Gram-Schmidt-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 So 13.11.2011
Autor: rainerS

Hallo!

> Im Raum [mm]P_{n}[/mm] definiere man das innere Produkt durch
>  [mm](p,q)=\integral_{0}^{1}{p(x)*\overline{q(x)} dx}[/mm]
>  für [mm]p,q \in P_{n}[/mm]
>  
> Man wende das Orthogonalisierungsverfahren von Gram-Schmidt
> auf das System [mm]{1,z,z^2}[/mm] im Raum [mm]P_{2}[/mm] an, um die
> Orthogonalbasis
> [mm]{1, \wurzel[2]{3}*(2*z-1), \wurzel[2]{5}*(6*z^2-6*z+1)[/mm]
>  im
> [mm]P_{2}[/mm] zu bekommen.
>  
>
>
>
>
>
>
> [mm]P_{n}[/mm] ist die Menge der Polynome, wie aus vorherigen
> Aufgabenstellungen ersichtlich ist.
>  
> Dass der erste Teil der Orthogonalbass 1 ist, ist trivial,
> ab dem zweiten frage ich mich, wie man das genau macht.
>  Ich versuche einfach, meinen Weg dazustellen und
> vielleicht findet ihr ja die Fehler.
>  
> Da das System aus Polynomen besteht, ist auch Zweiteres ein
> Polynom mit [mm]p(z)=0*z^2+1*z+0=z[/mm] ,
>  soweit ich das verstehe.
>  
> Die Formel zur Berechnung der Basis:
>  
> [mm]v_{n}=\bruch{w_{n}-\summe_{i=1}^{n-1}(w_{n},v_{i})*v_{i}}{\parallel w_{n}-\summe_{i=1}^{n-1}(w_{n},v_{i})*v_{i}\parallel}[/mm]
>  
> Um die zweite Basis auszurechnen: [mm]w_{n}=w_{2}=z[/mm]
>  
> Erstmal der Zähler:
> [mm]w_{2}-\summe_{i=1}^{2-1}(w_{2},v_{1})*v_{1}=z-(z,1)*1[/mm]
>  
> Das Skalarprodukt kann ich mit der Definition oben
> berechnen:
>  
> [mm]\integral_{0}^{1}{z dz}=\bruch{1}{2}[/mm]
>  
> Daraus ergibt sich im Zähler:
>  
> [mm]z-\bruch{1}{2}[/mm]
>  
> Für den gesamten Bruch:
>  
> [mm]\bruch{z-0,5}{\wurzel[2]{\integral_{0}^{1}{(z-0,5)*(z-0,5) dz}}}=\bruch{z-0,5}{\bruch{\wurzel[2]{105}}{15}}=\bruch{\wurzel[2]{105}*(2+z-1)}{14}[/mm]
>  
> Das ist ja nicht das Gleiche, wie in der Aufgabestellung
> steht.
>  
> Wo liegt mein Fehler? :(

Du hast dich beim Integral im Nenner verrechnet: [mm]\integral_0^1\left(z-\bruch{1}{2}\right)^2dz = \bruch{1}{12}[/mm].

  Viele Grüße
    Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de