www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Gram-Schmidt
Gram-Schmidt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gram-Schmidt: GS-Verfahren überall anwendbar
Status: (Frage) beantwortet Status 
Datum: 14:33 Mo 06.08.2007
Autor: polar_baer

Hallo

Ich habe eine Frage zum Orthogonalisierungsverfahren von Gram-Schmidt. Das Ganze ist mir klar im [mm] \IR^n [/mm] mit Standardskalarprodukt. Aber kann man das Verfahren nahtlos übernehmen, wenn man z.B. den Vektorraum aller Polynome nimmt und dort ein Skalarprodukt per Integral definiert?

Beispiel: V = VR der reellen Polynome vom Grad [mm] \le [/mm] 2

B(p,q) = [mm] \integral_{-1}^{1}{p(x)q(x) dx} [/mm]

Danke und Gruss

Björn

        
Bezug
Gram-Schmidt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Mo 06.08.2007
Autor: korbinian

Hallo
> Ich habe eine Frage zum Orthogonalisierungsverfahren von
> Gram-Schmidt.

Ich kenne das Verfahren nur für endlich-dimensionale Vektorräume. Dann allerdings funktioniert es in jedem euklidischen (bzw unitären) Vektorraum. also nicht nur im [mm] \IR^{n}. [/mm]

>..... Aber kann man das Verfahren nahtlos

> übernehmen, wenn man z.B. den Vektorraum aller Polynome
> nimmt und dort ein Skalarprodukt per Integral definiert?

Dieser Vektorraum ist ja unendlich-dimensional. Da das Verfahren doch eine Orthonormalbasis liefern soll und diese schrittweise konstruiert, muss es hier wohl versagen. Aber in jedem endlich-dimensionalen Untervektorraum funktioniert es.
  

> Beispiel: V = VR der reellen Polynome vom Grad [mm]\le[/mm] 2
> B(p,q) = [mm]\integral_{-1}^{1}{p(x)q(x) dx}[/mm]

  
Ja. hier geht´s.(s.oben)

Gruß korbinian


Bezug
                
Bezug
Gram-Schmidt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Mo 06.08.2007
Autor: polar_baer

Danke für die Hilfe. Noch eine Frage zum unendlich-dimensionalen Vektorraum: dort enthält ja die Basis eine unendliche linear unabhängige Teilmenge; heisst dies, dass man das Verfahren zwar anwenden könnte, aber dass das Ganze nur an der Unendlichkeit scheitert. D.h. z.B. im VR aller reellen Polynome würde man einfach nie an ein Ende kommen. Aber gibt es Räume mit Skalarprodukt, in denen das Verfahren an sich scheitert (und nicht daran, dass man es bis in alle Unendlichkeit fortsetzen müsste)?

Gruss

Björn

Bezug
                        
Bezug
Gram-Schmidt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Mo 06.08.2007
Autor: korbinian

Hallo
Ich fürchte, im unendlichen Fall kann ich keine allgemeine Aussage machen.

> Danke für die Hilfe. Noch eine Frage zum
> unendlich-dimensionalen Vektorraum: dort enthält ja die
> Basis eine unendliche linear unabhängige Teilmenge;

Ich bin mir nicht sicher, ob man von Anfang an eine Basis hat. Werde das gleich nacher zur Diskussion stellen.( Basis im [mm] \IQ- [/mm] Vektorraum  [mm] \IR?) [/mm]

>heisst

> dies, dass man das Verfahren zwar anwenden könnte, aber
> dass das Ganze nur an der Unendlichkeit scheitert. D.h.
> z.B. im VR aller reellen Polynome würde man einfach nie an
> ein Ende kommen.

In diesem Beispiel: ja

> Aber gibt es Räume mit Skalarprodukt, in
> denen das Verfahren an sich scheitert (und nicht daran,
> dass man es bis in alle Unendlichkeit fortsetzen müsste)?

Vielleicht, wenn man gar keine Basis kennt???
Gruß korbinian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de