www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Grammatiken & Mengen
Grammatiken & Mengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grammatiken & Mengen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 00:15 So 17.10.2004
Autor: Karl_Pech

Hallo Zusammen,


Ich habe zur Zeit einige Probleme mit zwei Aufgaben.
Eine poste ich jetzt hier und die andere in einem anderen Posting.


Aufgabe
Zu zwei nichtleeren Mengen [mm]A\![/mm] und [mm]B\![/mm] bezeichne [mm]B^A[/mm] die Menge aller totalen Funktionen und [mm]P(A,B)[/mm] die Menge aller partiellen Funktionen von [mm]A\![/mm] nach [mm]B\![/mm]. Zeigen Sie für nichtleere endliche Mengen [mm]A\![/mm] und [mm]B\![/mm]:


(a) [mm]\left|B^A\right| = \left|B\right|^{\left|A\right|}[/mm] (Hinweis: Induktion nach [mm]\left|A\right|[/mm]).

(b) [mm]\left|P(A,B)\right| = \left(\left|B\right| + 1\right)^{\left|A\right|}[/mm] (Hinweis: Verwenden Sie Teil (a)).


Bei dieser Aufgabe ist mir besonders unklar, was die Schreibweise [mm]B^A[/mm] bedeutet und was partielle und totale Funktionen sind. Wäre Klasse, wenn ihr mir da etwas helfen könntet.


Vielen Dank!



Viele Grüße
Karl



        
Bezug
Grammatiken & Mengen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 00:40 So 17.10.2004
Autor: Thomie

[mm]B^A:= {f}, f:B\rightarrow A[/mm]

So oder ähnlich müsste das euer Prof definiert haben.
In Worten steht da: [mm]A^B[/mm] bezeichne die Menge aller Funktionen, die A nach B abbilden.

Eine totale Funktion (das muss er doch irgendwie definiert haben!) klingt für mich so etwas nach Surjektivität, soll heißen, das jedes [mm]b\in B[/mm] auch "getroffen" wird.
Partiell ist das wahrscheinlich das Gegenteil davon, könnte aber auch bedeuten, dass f nicht auf ganz A definiert ist, also dass nicht jedem [mm]a\in A[/mm] ein [mm]b\in B[/mm] zugeordnet wird.

Mein Tipp an dich: mach eine Definitionensammlung, die du imer griffbereit hast (z.B. ein Vokabelheft), das hilft, wenn es mal schneller gehen soll beim Nachschlagen


Bezug
        
Bezug
Grammatiken & Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:14 So 17.10.2004
Autor: andreas

hi Karl

also meines wissens nach sind [m] B^A [/m] die abbildungen von $A$ nch $B$ und nicht andersrum, also [m] B^A := \{f: A \longrightarrow B: f \text{ abbildung} \}[/m].

unter einer partiellen abbildung wurde bei uns eine abbildung verstanden, die nicht notwendigerweise auf dem gesamten urbildbereich definiert ist, eine totale funktion ordnet hingegen jedem element des urbildbereichs ein bild zu.

ansonsten halte dich mal an die angegebenen hinweise.

grüße
andreas

Bezug
                
Bezug
Grammatiken & Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 So 17.10.2004
Autor: Karl_Pech

Hallo Andreas,

> unter einer partiellen abbildung wurde bei uns eine
> abbildung verstanden, die nicht notwendigerweise auf dem
> gesamten urbildbereich definiert ist,

Tja, irgendwie verstehe ich das nicht. Was ist mit dem "nicht
notwendigerweise" gemeint? Könntest du mir vielleicht
die Definition der Menge aller totaler und partieller Funktionen
mathematisch hinschreiben? Vielleicht wird es mir dann klarer.

Ach ja, was bedeutet eigentlich das "obere Kringel" in Teil b) beim
linken Teil der Gleichung?

Danke!


Viele Grüße
Karl
[P.S. Ich merke gerade, daß sich die PDF-Version des Übungsblattes
von meiner ausgedruckten Version unterscheidet. Auf meiner ausgedruckten Version ist das "Kringel" vorhanden. Ob es wohl nur
ein Zeichnungsfehler ist, und ohne Bedeutung ist? So sieht es aus:

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                        
Bezug
Grammatiken & Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 So 17.10.2004
Autor: andreas

hi

also zb ist [m] f: \mathbb{N} \longrightarrow \mathbb{N} [/m] mit [m] n \longmapsto \begin{cases} 10 & \textrm{für } n \not= 10 \\ \textrm{undefiniert} & \textrm{für } n = 10 \end{cases} [/m] eine partielle abbildung, da sie nicht jedem element aus $n$ ein bild zuordnet. mit dem nicht-notwendigerweise meinte ich, dass insbesondere jede totale abbildung auch eine partielle ist.
such mal bei google nach partieller abbildung da findet sich dann eine korrekte definietion.

grüße
andreas

Bezug
                                
Bezug
Grammatiken & Mengen: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 15:56 So 17.10.2004
Autor: Karl_Pech

Hallo Andreas,

Also viel habe ich bisher nicht geschafft. Hier ist meine Lösungsidee:

Induktionsanfang:

Sei $A = [mm] \emptyset$, [/mm] dann ist [m]\left|B\right|^{\left|\emptyset\right|} = \left|B\right|^0 = 1[/m]. Und [m]\left|B^\emptyset\right| = \left\{f:\emptyset \rightarrow B\ |\ \text{f ist Funktion}\right\}[/m]. Da
[mm] $\emptyset \in [/mm] B$, gibt es wohl nur eine einzige Funktion, die eine solche
Definitionsmenge haben kann, nämlich [m]f:\emptyset \rightarrow \emptyset[/m]. Damit gilt [m]\left|B^\emptyset\right| = \left|B\right|^{\left|\emptyset\right|} \gdw 1 = 1[/m] und wir haben einen Induktionsanfang.

Induktionsannahme:

Sei [mm] $\left|B^A\right| [/mm] = [mm] \left|B\right|^{\left|A\right|}$. [/mm] ;-)

Induktionsschritt:

Sei $A = [mm] \left\{a_0,...,a_{n-1}\right\}$. [/mm] Es gelte: [m]\left|B^{A\cup\left\{a_n\right\}}\right|[/m], wobei [mm] $a_n$ [/mm] irgendein neues Element für A sein soll. Nach der Induktionsvorraussetzung brauchen wir
offenbar nur den Fall [m]\left|B^{\left\{a_n\right\}}\right| = \left|B\right|^{\left|\left\{a_n\right\}\right|}[/m] zu betrachten. Auf der rechten Seite
erhalten wir [mm] $\left|B\right|^1$ [/mm] also [mm] $\left|B\right|$. [/mm] Auf der linken Seite
wird es komplizierter. Wie viele Funktionen wird es wohl geben, die von einer einelementigen Menge auf eine andere beliebig große Menge abbilden? Da wir es hier aber mit totalen Funktionen zu tun haben,
Funktionen also, die - wie du sagst - jedem Element aus dem Urbildbereich ein Element aus dem Bildbereich zuordnen, können wir
alle Elemente der Menge nacheinander durchlaufen und jeweils Funktionen
auf jedes dieser Elemente setzen. Insgesamt wären das dann
[mm] $\left|B\right|$ [/mm] Funktionen, nicht wahr? Also haben wir die Aussage bewiesen [mm] $\Box$. [/mm] Richtig?

Also wenn's jetzt soweit stimmt, weißt du eventuell, was denn
dieses Kringel bei b) zu bedeuten hat? Und inwiefern nützt mir da der Hinweis auf a)? Der rechte Teil der Gleichung muß wohl etwas damit
zu tun haben.

Vielen Dank!


Viele Grüße
Karl

Bezug
                                        
Bezug
Grammatiken & Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 17.10.2004
Autor: andreas

hi Karl

schön, dass du einen lösungsanstz postest, das macht mir die arbeit doch etwas leichter.

den induktionsanfang darfst du nicht mit [m] A = \emptyset [/m] machen, da die aussage dafür falsch ist: es gibt keine totale abbildung der leeren menge nach [m] B [/m], da elementen von $A$  elemnete von $B$ zugeordnet werden. bei dir werden mengen mengen zugeordnet (das $A$ nicht-leer sei wurde in der aufgabenstelleung vorausgetzt - schau mal nach). im weiteren sei $B$ stets eine feste endliche menge.

also IA:
sei [m] |A| = 1 [/m] dann gibt es genau [m] |B| =:n [/m] mögliche funktionen (= totale abbildungen)  von [m] A = \{ a \} [/m] nach $B$, nämlich für [m] B = \{ b_1, \hdots, b_n \} [/m] die funktionen [m] \{ f \}_{i=1}^n [/m] mit
[m] f_i: A \longrightarrow B; \; a \longmapsto b_i [/m].


IS:
voraussetzung: sei [m] |B^A| = |B|^{|A|} [/m] für alle [m] A [/m] mit [m] |A| \leq n [/m]
betrachte nun [m] A \cup \{a_{n+1}\} [/m]. funktionen $f$ von [m] A \cup \{a_{n+1}\} [/m] nach $B$ lassen sich nun stets auf $A$ einschränken:

[m] f|_A: A \longrightarrow B [/m]

und nach vorausstzung gibt es davon genau [m] |B|^{|A|} [/m] stück (da die menge $A$ $n$-elementig ist). um den gesamten urbild bereich auszuschöpfen, kann nun jede dieser funktionen so fortgestzt werden, das dem dazukommenden element [mm] $a_{n+1}$ [/mm] ein beliebiges element von $B$ zugeordnet wird und davon gibt ja genau $|B|$-stück. macht man dies mit jeder funktion so erhält man also [m] |B|^|A| \cdot |B| = |B|^{|A| + 1} = |B|^{|A \cup \{a_{n+1}\} |}[/m]-viele funktionen. damit ist die aussage bewiesen.

jedoch bin ich mit dem beweis noch nicht so ganz zufrieden - das sollte doch etwas klarer zu formulieren sein.


der kringel bei der aufgabe b) ist wohl nur ein druckfehler - ich kann mir zumindest nicht vorstellen, was der bedeuten soll.

der hinweis auf aufgabe a) bringt dir insofern was, da du weißt wieviele totale funktionen es gibt.
du kannst nun [m] P(A, B) = B^A \cup P(A, B) \setminus B^A [/m] betrachten. bei der ersten menge ist dir die mächtigkeit bekannt. die abbildungen der zweiten menge sind auf mindestens einem element undefiniert. betrachte mal die abbildungen die auf genau einem elemnet undefiniert sind. es gibt ja genau [m] |A| = \binom{|A|}{1} [/m]-möglichkeiten ein element aus der menge zu entfernen. diese abbildungen kann man nun aber wieder als totale abbildungen auf einer [m] |A|-1 [/m]-elemntigen menge betrachten - und wieveile es davon gibt ist ja nach teil a) bekannt. nun überlege dir mal, wieviel möglichkeiten es gibt 2, 3, ... elemnet aus $A$ zu entfernen...

probiere mal ob du damit zu teil b) was zustande bekommst.

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de