www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - Graph oder Komplement zyklisch
Graph oder Komplement zyklisch < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graph oder Komplement zyklisch: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:35 Di 26.05.2009
Autor: Wastelander

Aufgabe
G = (E, K, ϕ) sei ein Graph mit mindestens fünf Knoten. Zeigen Sie, dass G oder der zu G komplementäre Graph G = (E', K', ϕ') mit E' = E, k∈K' ⇔ k∉K und ϕ' : K' → E×E einen Kreis enthält.

Mein Ansatz hier ist Folgender:

Sei $G$ mit $E = [mm] \{e_1, ... , e_n\}$,$n \ge [/mm] 5$ zusammenhängend und kreisfrei. Somit existiert ein maximaler Weg zwischen $x,y [mm] \in [/mm] E$ mit Kanten [mm] $(v_1, [/mm] ... [mm] ,v_{n-1})$. [/mm]

Auch in [mm] $\bar{G}$ [/mm] existiert ein Weg zwischen $x$ und $y$ mit Kanten [mm] $(w_1, [/mm] ... [mm] ,w_m)$, $w_1, [/mm] ... , [mm] w_m \notin [/mm] K$. Weiterhin existiert eine Kante [mm] $w_0 [/mm] = (x,y)$, wodurch sich o.g. Weg zu einem Kreis erweitern lässt.

Kann man bei dieser Aufgabe so begründen? Ich habe allerdings noch keinen Ansatz für den 2. Fall (G kreisfrei und nicht zusammenhängend). Könnt ihr mir (mal wieder ^^) helfen?

LG
~W

        
Bezug
Graph oder Komplement zyklisch: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:20 Mi 27.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Graph oder Komplement zyklisch: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:03 Mi 27.05.2009
Autor: Wastelander

Aufgabe
Sei $G = [mm] (E,K,\phi)$ [/mm] ein Graph mit der Eigenschaft, dass alle Knoten den Knotengrad mindestens 2 haben. Zeigen Sie, dass G einen Kreis enthält.

Ich habe die Aufgabe noch einmal durchdacht und glaube, dass ich sie mithilfe des vorigen Aufgabenteils (s. oben) und einigen Modifikationen an meiner obigen Antwort vollständig lösen kann.

Zunächst meine Lösung zum ersten Aufgabenteil:

(a) Angenommen $G$ mit $E = [mm] \{e_1 , \cdots , e_n \}$ [/mm] sei kreisfrei und der Knotengrad [mm] $g(e_i) \ge [/mm] 2$ in jedem Knoten.

[mm] \Rightarrow [/mm] $G$ ist ein Baum [mm] \Rightarrow [/mm] $G$ hat maximal $n-1$ Kanten

Ein derartiger Graph müsste aber $ [mm] \summe_{i=1}^{n} g(e_i) \ge [/mm] 2 * n [mm] \ge [/mm] n-1$ Kanten haben, da jeder Knoten mind. 2 Kanten besitzt, die zu bisher unverbundenen Knoten führen.

[mm] \Rightarrow [/mm] Widerspruch


(b) Sei $G$ ein schlichter, kreisfreier Graph mit $n [mm] \ge [/mm] 5$ Knoten $E = [mm] \{e_1, \cdots , e_n\} [/mm] $.

[mm] \Rightarrow [/mm] $G$ ist maximal ein aufspannender Baum des vollständigen Graphen $V = (E, [mm] K_V, \phi_V)$. [/mm]
[mm] \Rightarrow [/mm] $G$ hat maximal $n-1$ Kanten [mm] $k_1, \cdots [/mm] , [mm] k_{n-1}$ [/mm] und jeder Knoten den Grad [mm] $g(e_i) \le [/mm] 2$.
[mm] \Rightarrow [/mm] Im komplementären Graph [mm] $\bar [/mm] {G}$ hat jeder Knoten den Grad [mm] $\bar g(e_i) \ge n-1-g(e_i) \ge [/mm] 2$.
[mm] \Rightarrow^{(a)} [/mm] $G$ enthält einen Kreis.

Erneut die Frage, kann man so argumentieren? Nach neuerlicher Überlegung bin ich mir mit meinem "Beweis" zu Aufgabenteil (a) überhaupt nicht mehr sicher.

Ich bitte um Hilfe.

LG ~W

Bezug
                        
Bezug
Graph oder Komplement zyklisch: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 27.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de