www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Graphenschnittpunktbestimmung
Graphenschnittpunktbestimmung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graphenschnittpunktbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Mi 09.05.2007
Autor: Carolin1102

Aufgabe
Der Graph der Funktion f(x)= 0,375 [mm] x^2 [/mm] +1,5 [mm] x^-2 [/mm] - 1,875 schneidet den Graphen der Funktion g(x)= [mm] - x^2 [/mm] +1 im Punkt B(-1;0). Berechnen Sie weitere Schnittpunkte.

g(x)=f(x)
0= [mm] -\bruch{5}{8} [/mm] [mm] z^2 [/mm] -0,875z +1,5
wobei z=[mm] x^2 [/mm]

x = 1 bzw. -1, wenn ich 1 bzw. -1 in f oder g einsetze erhalte ich nur B oder C (1;0).
Das Graphikmenü meines Taschenrechners zeigt mir aber noch 2 weitere Lösungen an. Wie berechne ich die?


        
Bezug
Graphenschnittpunktbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Mi 09.05.2007
Autor: M.Rex

Hallo.


Zuerst mal setze die Funktionen gleich:

Also

[mm] 0,375x²+\underbrace{\bruch{1,5}{x²}}_{=1,5x^{-2}}-1,875=-x²+1 [/mm]

Indem du beide Seiten mit x² multiplizierst, fällt der Bruch weg.

Also:
[mm] 0,375x²+\bruch{1,5}{x²}-1,875=-x²+1 [/mm]
[mm] \gdw 0,375x^{4}+1,5-1,875x²=-x^{4}+x² [/mm]
[mm] \gdw 1,375x^{4}-0,875x²+1,5=0 [/mm]
[mm] \gdw \bruch{11}{8}x^{4}-\bruch{7}{8}x²+\bruch{12}{8}=0 [/mm]
[mm] \gdw 11x^{4}-7x²+12=0 [/mm]

Als Nullstellen (Schnittstellen) hast du jetzt ja [mm] x=\pm1 [/mm]

Also kannst du jetzt eine Polynomdivision mit (x-1) und eine mit (x+1) machen, oder aber eine mit (x-1)(x+1)=x²-1

Dann erhältst du einen quadratischen "Restterm", der die beiden anderen Lösungen liefert.

Marius

Bezug
                
Bezug
Graphenschnittpunktbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:44 Mi 09.05.2007
Autor: hase-hh

moin!

> Hallo.
>  
>
> Zuerst mal setze die Funktionen gleich:
>  
> Also
>
> [mm]0,375x²+\underbrace{\bruch{1,5}{x²}}_{=1,5x^{-2}}-1,875=-x²+1[/mm]
>  
> Indem du beide Seiten mit x² multiplizierst, fällt der
> Bruch weg.
>  
> Also:
>  [mm]0,375x²+\bruch{1,5}{x²}-1,875=-x²+1[/mm]
>  [mm]\gdw 0,375x^{4}+1,5-1,875x²=-x^{4}+x²[/mm]
>  [mm]\gdw 1,375x^{4}-0,875x²+1,5=0[/mm]

hier erhalte ich [mm] -2,875x^2 [/mm]   ?!

> [mm]\gdw \bruch{11}{8}x^{4}-\bruch{7}{8}x²+\bruch{12}{8}=0[/mm]

und dann eben

[mm] \bruch{11}{8}x^4 [/mm] - [mm] \bruch{23}{8}x^2 [/mm] + [mm] \bruch{12}{8}=0 [/mm]

hier nehme ich die gleichung mal [mm] \bruch{8}{11} [/mm]  und substituiere [mm] z=x^2 [/mm]

[mm] z^2 [/mm] - [mm] \bruch{23}{11}z [/mm] + [mm] \bruch{12}{11} [/mm] =0

[mm] z_{1/2}= \bruch{23}{22} \pm \wurzel{ \bruch{529}{484} - \bruch{528}{484}} [/mm]

[mm] z_{1}=1 [/mm]  => resub    [mm] x_{1/2}= \pm [/mm] 1

[mm] z_{2}= \bruch{24}{22} [/mm]  => resub  [mm] x_{3/4}= \pm \wurzel{ \bruch{24}{22}} [/mm]

bzw.  [mm] x_{3/4}= \pm [/mm] 1,044465936...



... keine polynomdivision erforderlich!

gute nacht!

gruß
wolfgang







Bezug
                        
Bezug
Graphenschnittpunktbestimmung: Hast recht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Do 10.05.2007
Autor: M.Rex

Hallo

Du hast recht. Ich habe mich gestern da verrechnet. Und die Substitution ist auf jeden Fall auch der elegantere Weg.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de