www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Graphentheorie
Graphentheorie < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graphentheorie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:08 Di 25.10.2011
Autor: Fry

Hallo zusammen,

also es geht um Multigraphen [mm] $\Gamma$ [/mm] auf [mm] $\{1,...,N\}$ (N\in\IN) [/mm]
mit folgenden Eigenschaften:
(1) Jeder Graph [mm] $\Gamma$ [/mm] ist Vereinigung von $n$ Kreisen (der Maximallänge k)
(2) Jeder Graph [mm] $\Gamma$ [/mm] ist keine disjunkte Vereinigung von Doppelkreisen
(im Original "non-intersecting double loops") (der Maximallänge k)
Wie würdet ihr das verstehen, hab mal dazu ein Bildchen gemalt.
[Dateianhang nicht öffentlich]
Eher Variante B,also dass die Kreise einen Knoten gemeinsam haben dürfen oder Variante A, dass sie keine Knoten und Ecken gemeinsam haben dürfen?
(3) Jeder Graph [mm] $\Gamma$ [/mm] besitzt kein Einzelecken (single bonds)

Im folgenden soll nun mit [mm] $n_i$ [/mm] die Multiplizität des Knoten $i$ ($i=1,...,N$),
mit [mm] $n_{ij}$ [/mm] ($i<j,i,j=1,...,N$)die Mulitplizität der Ecke [mm] $\{i,j\}$,$|\Gamma|$ [/mm] die Multiplizität des Graphen [mm] $\Gamma$,d.h.$|\Gamma|=\sum_{i
Nun soll gelten (was ich nicht verstehe):
(4) [mm] $|\Gamma|\le [/mm] n*k$
(5) Für jede Ecke mit [mm] $n_{ij}\not=0$ [/mm] gilt: [mm] $2\le n_{ij}\le [/mm] n$
(6) Für jeden Knoten mit [mm] $n_i\not=0$ [/mm] gilt: [mm] $n_i\ge [/mm] 4$
(7) Es gibt entweder einen Knoten mit [mm] $n_i\ge [/mm] 8$ oder ein Knotenpaar, wobei jeder Knoten [mm] $n_i\ge [/mm] 6$ hat.



Hat jemand eine Ahnung, wie man dies aus (1)-(3) folgern kann?
Bräuchte da dringend eure Hilfe. Bin für jeden Hinweis dankbar.

Lieben Gruß
Fry


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Graphentheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 Di 25.10.2011
Autor: Fry

So, nochmal ein paar Fehler im Text beseitigt und die Zeichnung korrigiert

Bezug
        
Bezug
Graphentheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 Di 25.10.2011
Autor: Fry

Multiplizität eines Knoten = Anzahl der Ecken, die von dem Knoten ausgehen.

Multiplizität der Ecke i,j = Anzahl der Ecken zwischen dem Knoten i und j


Bezug
        
Bezug
Graphentheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Mi 02.11.2011
Autor: Fry

Hat niemand eine Idee ? :/




Bezug
        
Bezug
Graphentheorie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Mi 09.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de