www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Graphisches Lösen Gleichung
Graphisches Lösen Gleichung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graphisches Lösen Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 So 13.11.2016
Autor: rubi

Aufgabe
Löse die Gleichung |2x+4| + |x-6| = 8 grafisch.

Hallo zusammen,

grundsätzlich ist mir klar, wie man solch eine Betragsgleichung löst.
Aufgrund der Aufgabenstellung sehe ich jedoch zwei Möglichkeiten, die Aufgabe zu lösen:

1.Möglichkeit:
Ich zeichne die Funktionen f(x) = |2x+4| und g(x) = |x-6| in ein Koordinatensystem ein und bestimme per Ordinatenaddition das Schaubild von h(x) = f(x) + g(x).
Dann prüfe ich, wo das Schaubild von h(x) den y-Wert 8 annimmt.

2.Möglichkeit:
Ich schreibe die linke Seite der Gleichung betragsfrei durch entsprechende Fallunterscheidungen (x < -2, -2 < x < 6 und x > 6) und erhalte in den jeweiligen Intervallen drei Geraden die ich in das Koordinatensystem einzeichne und dann kontrolliere, wo die Geraden jeweils den y-Wert 8 annehmen.

Sind für die obige Aufgabenstellungen beide Möglichkeiten zulässig (da bei der 2.Möglichkeit bei der Fallunterscheidung ja auch gerechnet wird)

Oder gibt es noch eine 3.Möglichkeit, die ich übersehen habe ?

Vielen Dank für eure Antworten.

Viele Grüße
Rubi

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Graphisches Lösen Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 So 13.11.2016
Autor: Event_Horizon

Hallo!

Naja, deine erste Lösung ist schon die beste, weil sie nur ein Mindestmaß an Rechnung benötigt.

Dagegen finde ich die zweite Lösung nicht sonderlich gut, hier wird schon ziemlich viel gerechnet.

Ein Mittelding wäre, die Gleichung umzuschreiben zu

|2x+4|  = 8 - |x-6|

Da steckt nicht viel Mathe dahinter, die beiden Seiten lassen sich aber einfach zeichnen, und ihre Schnittpunkte bestimmen. Das spart man sich gegenüber deiner ersten Lösung einen Schritt beim Zeichnen.


Es ist irgendwo auch Geschmackssache, was man noch gelten lässt. Den zweiter Weg wäre mir too much, speziell auch, da man sich durch die Fallunterscheidung auch mathematisch schnell verhaspelt.

Bezug
                
Bezug
Graphisches Lösen Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:10 So 13.11.2016
Autor: abakus

Dritte Möglichkeit:
Beide Seite minus 8, dann Nullstellen ermitteln.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de