www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Grenzwert
Grenzwert < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: A 50.2 ff , Heuser Analysis 1
Status: (Frage) beantwortet Status 
Datum: 22:59 Mi 23.12.2015
Autor: sandroid

Aufgabe
Zeige:

2) [mm] $\limes_{x \to 0} \bruch{\wurzel{1+x * sin(x)} - cos(x)}{sin^{2}(\bruch{x}{2})}=4$ [/mm]

4) [mm] $\limes_{x \to 0} \bruch{\wurzel{cos(ax)}-\wurzel{cos(bx)}}{x^2} [/mm] = [mm] \bruch{(b^2 - a^2)}{4}$ [/mm]

5) [mm] $\limes_{x \to 1-} [/mm] ln(x) * ln(1-x) = 0$

Hallo,

heute mal ein par Grenzwerte, bei denen ich nicht weiter komme.

Wenn ich einen eigenen Ansatz hätte, würde ich den euch gerne verraten. Ich habe schon die Regel von de l'Hospital versucht anzuwenden, doch teils werden dann die Rechnungen sehr lang, weswegen ich nicht mehr an den Erfolg dadurch glaubte.

Kann es sein, dass ich bei 4) den Term zu einem Differenzquotienten umformen muss?

Für Tipps bin ich dankbar!


        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Do 24.12.2015
Autor: Gonozal_IX

Hiho,

wende bei 1.) und 2.) die dritte binomische Formel an, sowie bei ersten zusätzlich das Additionstheorem

[mm] $\sin^2(x) [/mm] = [mm] \frac{1}{2}(1-\cos(2x))$ [/mm]

Dadurch erhälst du jeweils ein Produkt von Grenzwerten, bei dem einer sich direkt berechnen lässt und der andere jeweils durch l'Hopital mit maximal 2 Schritten kerechnet werden kann.

Die dritte Aufgabe machen wir dann zuletzt :-)

Gruß,
Gono

Bezug
                
Bezug
Grenzwert: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:34 Do 24.12.2015
Autor: sandroid


Hallo,

vielen Dank für deine schnelle Antwort.

Könntest du das mit der binomischen Formel noch näher erläutern?
Ich vermag noch nicht so recht zu sehen, wo ich diese hier anwenden kann.



Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Do 24.12.2015
Autor: fred97

Nehmen wir uns  [mm] \bruch{\wurzel{cos(ax)}-\wurzel{cos(bx)}}{x^2} [/mm] vor.

[mm] \bruch{\wurzel{cos(ax)}-\wurzel{cos(bx)}}{x^2}=\bruch{\wurzel{cos(ax)}-\wurzel{cos(bx)}}{x^2}* \bruch{\wurzel{cos(ax)}+\wurzel{cos(bx)}}{\wurzel{cos(ax)}+\wurzel{cos(bx)}}= \bruch{cos(ax)-cos(bx)}{x^2(\wurzel{cos(ax)}+\wurzel{cos(bx)})} [/mm]

FRED

Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Fr 25.12.2015
Autor: Thomas_Aut

Hallo,


zum letzten Bsp:

$ln(x)ln(x-1) = [mm] \frac{ln(x-1)}{\frac{1}{ln(x)}}$ [/mm]

nun l'Hospital.


Lg

Bezug
                
Bezug
Grenzwert: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 Fr 25.12.2015
Autor: sandroid

Vielen Dank Thomas, Fred und Gonozal!
Eure Antworten haben mir wie immer geholfen.

Ich sehe schon, ich muss da noch mehr Grenzwertaufgaben üben, um mit den Methoden etwas geläufig zu werden.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de