www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Grenzwert
Grenzwert < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Grenzwert bestimmen
Status: (Frage) beantwortet Status 
Datum: 21:18 Mo 06.11.2006
Autor: patro

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
habe hier ein paar Probleme und weiss nicht was man da eigentlich von mir will-.-
also,
1.lautet:

Bestimmen sie:
[mm] \limes_{n\rightarrow\infty} (\wurzel{n+1}-\wurzel{n}) [/mm]

davon soll ich mehrere Aufgaben Bestimmen,was immer das heissen mag..

2.
Zeigen sie:
[mm] \limes_{n\rightarrow\infty}\bruch{1}{n^p}=0 [/mm]  für jedes feste [mm] p\in\IN/{0} [/mm]

oder für

[mm] \limes_{n\rightarrow\infty}\bruch{1}{\wurzel[n]{p}} [/mm]

über Hilfe wäre ich sehr dankbar*g


        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Di 07.11.2006
Autor: Huntsman

zu 2)

Du brauchst einfach im nächsten Schritt [mm] (\Rightarrow [/mm] nicht vergessen) eine sehr große Zahl für n einsetzen, z.B. 100 Mrd., da n ja gegen unendlich gehen soll. Und für p setzt du eine beliebige andere Zahl, am besten 1 ein.
Dann siehst du schon, dass du 1 durch eine riesige Zahl teilen musst. Und je größer dann die Zahl im Nenner ist, desto kleiner wird das Ergebnis bzw. desto mehr geht es gegen 0.

In der zweiten Aufgabe brauchst du auch nur eine sehrgroße Zahl für n einsetzen und fr p dann eine x-beliebige, wie z.B. 2 (1 passt hier nicht so gut, da die [mm] x\wurzel{1} [/mm] 1 ist!). Auch hier sieht man nun, dass das ERgebnis unter der Wurzel enorm klein wird und gegen 0 tendiert, je größer n ist. Da man aber 1 durch eine ungeheuer kleine Zahl teilt, wird das Endergebnis immer größer (, wenn du mir nicht glaubst, versuchs z.B. mit n=2 und n=5) und geht gegen undendlich. (Nur so nebenbei: Das ürde so weitergehen, bis der Nenner 0 ergeben würde. Der Nenner darf aber nie 0 erreichen. Man darf ja nicht durch 0 teilen!)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de