Grenzwert < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo
Ich habe eine Frage zu folgender Aufgabe, und zwar soll man zuerst mathematisch präzise formulieren, was folgender Satz bedeutet " Eine Funktion f ist genau dann stetig im Punkt x0, wenn der linksseitige und der echtsseitige Grenzwert übereinstimmen"
Also die mathemathische Formulierung ist ja kein problem, aber wie beweise ich das detailliert???
( hier meine Mathematische Formulierung : f: [mm] \IR \to \IR [/mm] stetig im Punkt x0 [mm] \gdw [/mm] limf(x) =limf(x)=limf(x)
( hierbei ist der erste lim der für x geht gegen xo von links, der zweite der für x geht gegen xo von rechts und der letzte der für x geht gegen xo; leider konnt ich das mit dem Formeleditor nicht aufschreiben)
Es wäre super nett wenn mir jemand erklären könnte, wie man das detailliert beist.
|
|
|
|
Hallo, Yellowbird,
da scheint mir nichts zu beweisen zu sein wenn ich richtig interpretiere,
was Du schreiben wolltest, nämlich bloß eine Definition
der Stegitkeit:
rechts- und links-seitiger Grenzwert (existieren und ) stimmen mit dem Funktionswert überein .
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:50 Do 02.12.2004 | Autor: | Marcel |
Hallo Yellowbird,
natürlich bedarf es da eines Beweises. Wir zeigen:
(I) $f$ ist stetig in [mm] $x_0$ $\gdw$ [/mm] Für alle Folgen [mm] $(x_n)_{n \in \IN}$ [/mm] in [mm] $\IR$ [/mm] mit [m]\lim_{n \to \infty}x_n=x_0[/m] gilt [m]\lim_{n \to \infty}f(x_n)=f(x_0)[/m].
(Beachte dabei, dass in [mm] $\IR$ [/mm] jeder Punkt Häufungspunkt von [mm] $\IR$ [/mm] ist.)
Beweis.
[mm] "$\Rightarrow$" [/mm] Sei $f$ stetig in [mm] $x_0$. [/mm] Sei [mm] $(x_n)_{n \in \IN}$ [/mm] irgendeine Folge in [mm] $\IR$ [/mm] mit [mm] $x_n \to x_0$ [/mm] ($n [mm] \to \infty$) [/mm] und sei [mm] $\varepsilon [/mm] > 0$ gegeben. Da $f$ stetig in [mm] $x_0$ [/mm] ist existiert ein [mm] $\delta=\delta_{\varepsilon,x_0}$, [/mm] so dass:
[mm] $\blue{(\star)}$ [/mm] Für alle [mm] $\blue{x \in \IR}$ [/mm] mit [mm] $\blue{|x-x_0|<\delta}$ [/mm] gilt: [mm] $\blue{|f(x)-f(x_0)|<\varepsilon}$.
[/mm]
Wegen [mm] $x_n \to x_0$ [/mm] ($n [mm] \to \infty$) [/mm] existiert aber ein [m]N=N_{\delta}=N_{\delta_{\varepsilon}} \in \IN[/m], so dass für alle $n [mm] \ge [/mm] N$ gilt:
[mm] $|x_0-x_n| [/mm] < [mm] \delta$. [/mm]
Wegen [mm] $\blue{(\star)}$ [/mm] folgt dann [mm] $|f(x_n)-f(x_0)|<\varepsilon$ [/mm] ([m]\forall n \ge N[/m]), und damit, da [mm] $\varepsilon [/mm] > 0$ beliebig war, also [m]f(x_n) \to f(x_0)[/m] ($n [mm] \to \infty$).
[/mm]
[mm] "$\Leftarrow$" [/mm] Angenommen, $f$ sei nicht stetig in [mm] $x_0$. [/mm] Dann existiert ein [mm] $\blue{\varepsilon > 0}$[blue], [/mm] so dass für alle [mm] [/blue]$\blue{\delta > 0}$[blue] [/mm] ein[/blue] [m]\blue{x=x_{\delta} \in \IR}[/m] mit [m]\blue{|x-x_0|<\delta}[/m] und [mm] $\blue{|f(x)-f(x_0)| \ge\varepsilon}$ [/mm] existiert. Wir betrachten die Folge von Intervallen [mm] $I_n:=\left(x_0-\frac{1}{n},x_0+\frac{1}{n}\right)$ [/mm] für $n [mm] \in \IN$. [/mm] In einem jeden solchen Intervall existiert (wegen der angenommenen Unstetigkeit von $f$ in [mm] $x_0$) [/mm] ein [m]\overline{x} \in I_n[/m], so dass [mm] $|f(\overline{x})-f(x_0)|\ge \varepsilon$ [/mm] gilt. Dadurch läßt sich dann aber eine Folge [mm] $(\hat{x}_n)_{n \in \IN}$ [/mm] konstruieren, die zwangsläufig gegen [mm] $x_0$ [/mm] streben muss, aber die Eigenschaft hat, dass
[mm] $|f(\hat{x}_n)-f(x_0)|\ge \varepsilon$ [/mm] für alle $n [mm] \in \IN$ [/mm] gilt, d.h. [m](f(\hat{x}_n))_{n \in \IN}[/m] konvergiert nicht gegen [mm] $f(x_0)$, [/mm] obwohl [m]\hat{x}_n \to x_0[/m] ($n [mm] \to \infty$). [/mm]
(Denn: Für $n [mm] \in \IN$ [/mm] wählen wir ein [mm] $z=z_n \in I_n$, [/mm] so dass [m]|f(z)-f(x_0)|\ge \varepsilon[/m] gilt, setzen dann [m]\hat{x}_n:=z[/m] und definieren damit eine Folge mit der gewünschten Eigenschaft! Beachte dabei insbesondere:
[mm] $I_n \not= \emptyset$ $\forall [/mm] n [mm] \in \IN$ [/mm] (etwa weil [mm] $x_0 \in I_n$[/mm] [m]\forall n \in \IN[/m])).
Widerspruch. [mm] $\Box$
[/mm]
Aus der Aussage (I) folgt unmittelbar das, was du zeigen sollst!
Viele Grüße,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:44 Do 02.12.2004 | Autor: | Marcel |
Hallo nochmal!
Etwas "allgemeiner" findest du den Beweis (den ich geführt habe) auch hier: Skript zur Analysis, Satz 10.7 auf Seite 94 (skriptinterne Zählung).
Viele Grüße,
Marcel
|
|
|
|