www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert
Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:00 Mo 25.08.2008
Autor: tedd

Aufgabe
Bestimmen Sie folgenden Grenzwert:
[mm] \limes_{n\rightarrow\infty}\bruch{1}{\sqrt{n*(n+1)}-n} [/mm]

Der Grenzwert müsste 2 sein.
Ich hätte es eigtl so gemacht aber es stimmt nicht und ich weis nicht wieso:

[mm] \limes_{n\rightarrow\infty}\bruch{1}{\sqrt{n*(n+1)}-n} [/mm]

[mm] =\bruch{\limes_{n\rightarrow\infty}1}{\limes_{n\rightarrow\infty}\sqrt{n*(n+1)}-n} [/mm]

[mm] =\bruch{1}{\limes_{n\rightarrow\infty}\sqrt{n^2*(1+\bruch{1}{n})}-n} [/mm]

[mm] =\bruch{1}{\limes_{n\rightarrow\infty}n*\sqrt{(1+\bruch{1}{n})}-n} [/mm]

[mm] =\bruch{1}{\limes_{n\rightarrow\infty}\sqrt{(1+\bruch{1}{n})}-1} [/mm]

[mm] =\bruch{1}{\sqrt{\limes_{n\rightarrow\infty}(1+\bruch{1}{n})}-\limes_{n\rightarrow\infty}1} [/mm]

[mm] =\bruch{1}{\sqrt{(1+0)}-1} [/mm]

[mm] =\bruch{1}{0} [/mm]
!?

Danke und Gruß,
tedd


        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Mo 25.08.2008
Autor: schachuzipus

Hallo tedd,

> Bestimmen Sie folgenden Grenzwert:
>  [mm]\limes_{n\rightarrow\infty}\bruch{1}{\sqrt{n*(n+1)}-n}[/mm]
>  Der Grenzwert müsste 2 sein. [ok]
>  Ich hätte es eigtl so gemacht aber es stimmt nicht und ich
> weis nicht wieso:
>  
> [mm]\limes_{n\rightarrow\infty}\bruch{1}{\sqrt{n*(n+1)}-n}[/mm]
>  
> [mm]=\bruch{\limes_{n\rightarrow\infty}1}{\limes_{n\rightarrow\infty}\sqrt{n*(n+1)}-n}[/mm]

Das darfst du nur machen, wenn der Limes des Nenners auch existiert, tut er das?

Wenn du Grenzwerte vertauschst, musst du das immer begründen, wir hatten doch vorhin mal ein Bsp. , wo der GW 1 war, beim "Auseinanderrupfen" aber [mm] $0\cdot{}\infty$ [/mm] herauskam ...

>  
> [mm]=\bruch{1}{\limes_{n\rightarrow\infty}\sqrt{n^2*(1+\bruch{1}{n})}-n}[/mm]
>  
> [mm]=\bruch{1}{\limes_{n\rightarrow\infty}n*\sqrt{(1+\bruch{1}{n})}-n}[/mm]
>  
> [mm]=\bruch{1}{\limes_{n\rightarrow\infty}\sqrt{(1+\bruch{1}{n})}-1}[/mm]

[kopfkratz3] wohin ist das n verschwunden? Du hast es ausgeklammert, ok, aber wo ist es hin?

>  
> [mm]=\bruch{1}{\sqrt{\limes_{n\rightarrow\infty}(1+\bruch{1}{n})}-\limes_{n\rightarrow\infty}1}[/mm]
>  
> [mm]=\bruch{1}{\sqrt{(1+0)}-1}[/mm]
>  
> [mm]=\bruch{1}{0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Das wäre $\infty$ , also nicht gerade 2 ;-)

>  !?
>  
> Danke und Gruß,
>  tedd
>  

Bei derartigen Differenzen oder Summen von Wurzeln, empfiehlt es sich sehr sehr oft, so zu erweitern, dass du die 3. binomische Formel hinbastelst und so die fiesen Wurzeln wegbekommst.

So auch hier:

Erweitere $\bruch{1}{\sqrt{n\cdot{}(n+1)}-n}$ mit $\sqrt{n\cdot{}(n+1)}\red{+}n$

Dann bekommst du:

$\bruch{1}{\sqrt{n\cdot{}(n+1)}-n} =\frac{\blue{\sqrt{n\cdot{}(n+1)}+n}}{(\sqrt{n\cdot{}(n+1)}-n)\cdot{}\blue{(\sqrt{n\cdot{}(n+1)}+n)}} }}$

$=\frac{\sqrt{n(n+1)}+n}{n(n+1)-n^2}$

das ist die 3. bin. Formel im Nenner ...

Nun mach mal weiter ... mit Umformungen  ähnlich deinen oben


LG

schachuzipus

    




Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Mo 25.08.2008
Autor: tedd

Achso...
Ja stimmt, das mit der Aufgabe von vorhin hätte mir eigentlich zu denken geben müssen.
Ich habe im Nenner dann "einfach" durch n dividiert, daher ist es auch verschwunden, aber ich weis ja jetzt, dass das falsch war.

$ [mm] \frac{\sqrt{n(n+1)}+n}{n(n+1)-n^2} [/mm] $

[mm] =\bruch{\sqrt{n^2+n}+n}{n^2+n-n^2} [/mm]

[mm] =\bruch{\sqrt{n^2*(1+\bruch{1}{n})}+n}{n} [/mm]

[mm] =\bruch{n*(\sqrt{1+\bruch{1}{n}}+1)}{n} [/mm]

[mm] =\sqrt{1+\bruch{1}{n}}+1 [/mm]

und dazu der Grenzwert:
[mm] \limes_{n\rightarrow\infty}\sqrt{1+\bruch{1}{n}}+1 [/mm]

Kann ich jetzt einfach Auseinanderrupfen weil ich weis, dass beide konvergieren?

[mm] =\sqrt{ \limes_{n\rightarrow\infty}(1+\bruch{1}{n})}+\limes_{n\rightarrow\infty}1 [/mm]

[mm] =\sqrt{1+0}+1 [/mm]

=2

Das wär ja dann auch das was rauskommen soll :-)

Danke und Gruß,
tedd

Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mo 25.08.2008
Autor: schachuzipus

Hallo nochmal,

> Achso...
> Ja stimmt, das mit der Aufgabe von vorhin hätte mir
> eigentlich zu denken geben müssen.
>  Ich habe im Nenner dann "einfach" durch n dividiert, daher
> ist es auch verschwunden, aber ich weis ja jetzt, dass das
> falsch war.
>  
> [mm]\frac{\sqrt{n(n+1)}+n}{n(n+1)-n^2}[/mm]
>  
> [mm]=\bruch{\sqrt{n^2+n}+n}{n^2+n-n^2}[/mm]
>  
> [mm]=\bruch{\sqrt{n^2*(1+\bruch{1}{n})}+n}{n}[/mm]
>  
> [mm]=\bruch{n*(\sqrt{1+\bruch{1}{n}}+1)}{n}[/mm]
>  
> [mm]=\sqrt{1+\bruch{1}{n}}+1[/mm]

[daumenhoch]

>  
> und dazu der Grenzwert:
>  [mm]\limes_{n\rightarrow\infty}\sqrt{1+\bruch{1}{n}}+1[/mm]
>  
> Kann ich jetzt einfach Auseinanderrupfen weil ich weis,
> dass beide konvergieren?

Ja, oder direkt den Grenzübergang machen, hier ist es ja klar ;-)



>  
> [mm]=\sqrt{ \limes_{n\rightarrow\infty}(1+\bruch{1}{n})}+\limes_{n\rightarrow\infty}1[/mm]
>  
> [mm]=\sqrt{1+0}+1[/mm]
>  
> =2
>  
> Das wär ja dann auch das was rauskommen soll :-)

Zurecht gegrinst

Es passt alles

>  
> Danke und Gruß,
>  tedd


LG

schachuzipus

Bezug
                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:25 Mo 25.08.2008
Autor: tedd

Super![ok]
Danke für deine Hilfe schachuzipus.
Das weis ich sehr zu schätzen und bin dir sehr dankbar.
Gruß,
tedd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de