Grenzwert < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:47 Mi 18.01.2012 | Autor: | IG0R |
Aufgabe | Bestimme den Grenzwert der Funktion f(x,y) = [mm] \frac{x^2+y^2}{2xy} [/mm] an der Stelle (x,y)=(0,0) |
Ich habe in diesem Fall versucht über 2 Folgen zu zeigen, dass es keinen Grenzwert gibt.
Mein erster Versuch war: (1/n,1/n), wobei ich allerdings [mm] \lim [/mm] f(1/n,1/n)=1 erhalten habe.
Mein zweiter Versuch war [mm] (1/n,1/n^2) [/mm] und hierbei habe ich [mm] \lim f(1/n,1/n^2) [/mm] = [mm] \infty [/mm] erhalten.
Ich gehe doch jetzt recht in der Annahme, dass das jetzt bedeutet, dass die Funktion für (0,0) keinen Grenzwert besitzt oder?
|
|
|
|
> Bestimme den Grenzwert der Funktion f(x,y) =
> [mm]\frac{x^2+y^2}{2xy}[/mm] an der Stelle (x,y)=(0,0)
> Ich habe in diesem Fall versucht über 2 Folgen zu zeigen,
> dass es keinen Grenzwert gibt.
>
> Mein erster Versuch war: (1/n,1/n), wobei ich allerdings
> [mm]\lim[/mm] f(1/n,1/n)=1 erhalten habe.
>
> Mein zweiter Versuch war [mm](1/n,1/n^2)[/mm] und hierbei habe ich
> [mm]\lim f(1/n,1/n^2)[/mm] = [mm]\infty[/mm] erhalten.
>
> Ich gehe doch jetzt recht in der Annahme, dass das jetzt
> bedeutet, dass die Funktion für (0,0) keinen Grenzwert
> besitzt oder?
Das ist korrekt, du musst ja für alle möglichen existierenden Folgen, die gegen den gewünschten Untersuchungspunkt konvergieren, zeigen, dass der Grenzwert identisch ist, damit er existieren soll. Wenn du also als Gegenbeispiel EINE einzige Folge findest, für den der Grenzwert der Funktion nicht existiert, hast du bereits ein Gegenbeispiel erbracht. Weitere Vorschläge sind z.b. bei 0,0 immer ln(x) für x gegen 1 oder sin(x) für x gegen 0, die hier aber auch 1 liefern. Aber du hast ja ein Gegenbeispiel gefunden!
|
|
|
|
|
> > Bestimme den Grenzwert der Funktion f(x,y) =
> > [mm]\frac{x^2+y^2}{2xy}[/mm] an der Stelle (x,y)=(0,0)
> > Ich habe in diesem Fall versucht über 2 Folgen zu
> zeigen,
> > dass es keinen Grenzwert gibt.
> >
> > Mein erster Versuch war: (1/n,1/n), wobei ich allerdings
> > [mm]\lim[/mm] f(1/n,1/n)=1 erhalten habe.
> >
> > Mein zweiter Versuch war [mm](1/n,1/n^2)[/mm] und hierbei habe ich
> > [mm]\lim f(1/n,1/n^2)[/mm] = [mm]\infty[/mm] erhalten.
> >
> > Ich gehe doch jetzt recht in der Annahme, dass das jetzt
> > bedeutet, dass die Funktion für (0,0) keinen Grenzwert
> > besitzt oder?
>
> Das ist korrekt, du musst ja für alle möglichen
> existierenden Folgen, die gegen den gewünschten
> Untersuchungspunkt konvergieren, zeigen, dass der Grenzwert
> identisch ist, damit er existieren soll. Wenn du also als
> Gegenbeispiel EINE einzige Folge findest, für den der
> Grenzwert der Funktion nicht existiert, hast du bereits ein
> Gegenbeispiel erbracht. Weitere Vorschläge sind z.b. bei
> 0,0 immer ln(x) für x gegen 1 oder sin(x) für x gegen 0,
> die hier aber auch 1 liefern. Aber du hast ja ein
> Gegenbeispiel gefunden!
>
Angenommen ich habe 2 verschiedene Folgen [mm] (x_{n1},y_{n1}) [/mm] , [mm] (x_{n2},y_{n2}), [/mm] die beide gegen (0,0) konvergieren.
Nun setze ich die beiden Folgen in die Funktion ein und bekomme 2 verschiedene Grenzwerte, wenn n gegen [mm] \infty [/mm] läuft.
Habe ich dann auch Unstetigkeit für den Punkt (0,0) nachgewiesen?
Ciao
|
|
|
|
|
Hallo MatheStudi7,
> Angenommen ich habe 2 verschiedene Folgen [mm](x_{n1},y_{n1})[/mm] ,
> [mm](x_{n2},y_{n2}),[/mm] die beide gegen (0,0) konvergieren.
> Nun setze ich die beiden Folgen in die Funktion ein und
> bekomme 2 verschiedene Grenzwerte, wenn n gegen [mm]\infty[/mm]
> läuft.
> Habe ich dann auch Unstetigkeit für den Punkt (0,0)
> nachgewiesen?
Jo!
>
> Ciao
>
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:52 Mi 18.01.2012 | Autor: | IG0R |
Ja denn die Definition des Grenzwertes lautet wie folgt:
[mm] \lim \limits_{x\to p} [/mm] f(x) = L genau dann, wenn für jede Folge [mm] (x_n)_{n\in \mathds{N}} [/mm] mit [mm] x_n \in [/mm] D [mm] \backslash [/mm] {p} und [mm] \lim\limits_{n \to \infty} x_n= [/mm] p gilt, dass [mm] \lim \limits_{n \to \infty} f(x_n) [/mm] = L
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:54 Mi 18.01.2012 | Autor: | IG0R |
Wie verhält sich das ganze, wenn ich jetzt statt der Funktion f(x,y) von oben die neue Funktion g(x,y,z) betrachte mit sin(z)*f(x,y) und das an der Stelle (0,0,0)?
Geht da der Sinus schneller gegen 0 als Klammer gegen [mm] \infty [/mm] geht?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:24 Mi 18.01.2012 | Autor: | leduart |
[mm] sinz=z+O(z^3) [/mm] (Taylor)
also kannst du genausogut z*f(x,y) ansehen und so wie du folgen wählen un [mm] z:N=1/\wurzel{n}
[/mm]
Gruss leduart
|
|
|
|