www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwert
Grenzwert < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Grenzwert einer Funktion
Status: (Frage) beantwortet Status 
Datum: 00:06 Mo 17.12.2012
Autor: chris1909

Aufgabe
Bestimme die Grenzwerte [mm] \limes_{x\rightarrow\infty} [/mm] , [mm] \limes_{x\rightarrow\- infty} [/mm] , [mm] \limes_{x\rightarrow\0} [/mm] für die Funktion f(x) = [mm] ((x^{3}-2)/x^{4}) [/mm] - 1

Bräuchte eine Korrektur:

Habe für x gegen 0 den Grenzwert "nicht definiert", gegen unendlich und minus unendlich jeweils -1. Ist das richtig?
Danke!

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 00:16 Mo 17.12.2012
Autor: reverend

Hallo chris,

> Bestimme die Grenzwerte [mm]\limes_{x\rightarrow\infty}[/mm] , [mm]\limes_{x\rightarrow\- infty}[/mm] , [mm]\limes_{x\rightarrow\0}[/mm]
> für die Funktion f(x) = [mm]((x^{3}-2)/x^{4})[/mm] - 1

Hm. Ist das Deine Notation oder steht das so in der Aufgabe? Unschön jedenfalls.
Wenn ich mal in den Quelltext schaue, sollen also die Grenzwerte für [mm] $x\to +\infty$, $x\to -\infty$ [/mm] und für [mm] x\to{0} [/mm] betrachtet werden.

>  Bräuchte eine Korrektur:
>  
> Habe für x gegen 0 den Grenzwert "nicht definiert",

Das wird wahscheinlich nicht reichen. Du betrachtest da nicht den Grenzwert, sondern die Stelle x=0. So funktioniert das aber nicht mit den Grenzwerten. Hier müsstest Du entweder [mm] +\infty [/mm] oder [mm] -\infty [/mm] herausbekommen. Welches ist richtig - und warum?

> gegen
> unendlich und minus unendlich jeweils -1. Ist das richtig?

Ja, das ist richtig.

Grüße
reverend


Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 00:21 Mo 17.12.2012
Autor: Marcel

Hallo Chris,

> Bestimme die Grenzwerte [mm]\limes_{x\rightarrow\infty}[/mm] ,
> [mm]\limes_{x\rightarrow\- infty}[/mm] , [mm]\limes_{x\rightarrow\0}[/mm]
> für die Funktion f(x) = [mm]((x^{3}-2)/x^{4})[/mm] - 1

reine Notationskorrektur:
Bestimme die Grenzwerte [mm]\limes_{x\rightarrow \infty}f(x)[/mm] , [mm]\limes_{x\rightarrow -\infty}f(x)[/mm] , [mm]\limes_{x\rightarrow 0}f(x)\,.[/mm]

>  Bräuchte eine Korrektur:
>  
> Habe für x gegen 0 den Grenzwert "nicht definiert",

Ganz falsch ist das nicht: In [mm] $\IR$ [/mm] ist der Grenzwert nicht definiert!
Ansonsten hat reverend da ja schon etwas dazu gesagt...

> gegen
> unendlich und minus unendlich jeweils -1. Ist das richtig?

Wie reverend sagte: Ja! Die Frage ist nur: Wie begründest Du das?

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de